
AD-A132   299 

UNCLASSIFIED 

THE   DESIGN OF   BACKTRACK  ALGORITHMSIU»   NAVAL 
POSTGRADUATE   SCHOOL  MONTEREY CA    G LOBERG JUN 83 

S" 
VI 

F/G 9/2 NL 

•V 

1   Hf^H       ^H   1   !«•••• 

END 
DATE 

HLIIfD 

9   83 
DTif 

I 



1.0 £•- ma 

i.i 
• 36 

US   112.0 

1.25 HI 1.4   H 1.6 

MICROCOPY RESOLUTION TEST CHART 

NATIONAL   BUBE*U OF STANDARDS - i9«S - A 



-1    > 

0> 

CO 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

O 
C-3 

e-3 m 

THESIS 
THE DESIGN OF BACKTRACK ALGORITHMS 

hv 

Gary Loberg 

June 1983 

Thesis Advisor:            Douglas R. Sm. Lth 

Approved for public release; distribution unlimited xf 

8 3    09   09    057    ^      ^ 



»«.CUR1TV CLASSIFICATION^ OF THIS P AOC ft»ni»«i Kntaraa? 

REPORT DOCUMENTATION PAGE 
I   M»6ftT„uM«tft 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

a. OOVT ACCESSION NO 3.     RECIPIENT'S CATALOG  NUMIC* 

«•   TITLE fan* Su»llll.) 

The Design of Backtrack Algorithms 
s. TYRE or nenoRT a PEWOO COVERED 
Master's Thesis 
June, 1983 

»  PERFORMING OKG. KtPOUT NUMICK 

7.    AUTHONfaJ 

Gary  Loberg 
I. CONTRACT OH GRANT NUMSCRf.j 

••   RCRFORMINaOROANIZATION NAME ANO AOOntSS 

Naval Postgraduate School 
Monterey, California 93940 

10.    PROGRAM  ELEMENT. PROJECT,  '   \SK 
AREA * «On« UNIT NUMBERS 

II.   COMTROLLIMO OFFICE NAMC ANO AOORESS 

Naval Postgraduate School 
Monterey, California 93940 

12.    REPORT OATE 

June.   1985 
13.    NUMBER OF PAGES 

94 
14.   MONITORING AOCMCV NAMC A  AOORCSSfl/ dlllmnml Inm Contnllln, Olllcm) IS.    SECURITY CLASS,  tot (Ma r*pon) 

UNCLASSIFIED 

15«.     OECL ASSiriCATION/ DOWNGRADING 
SCHEDULE 

I«.   DISTRIBUTION ITATKMCNT (al Oil* KSSST 

Approved for public release; distribution unlimited 

17.   DISTRIBUTION STATEMENT (»I Ma •»•<r«cr anraratf Im Block 3», II dtlltm» Inm ä.OOM) 

1«.    SUPPLEMENTARY NOTES 

<••   KEY aonoi fCwHAmw on n»**raa •'*• II m—t—rr mtt immnttty by block maaaar) 

backtrack algorithms, program synthesis, control structure 
abstraction, problem reduction, state space search, graph 
search 

10.   ABSTRACT rCMiMw an r««araa »lam II nacaaaar» ana) laanii*/ my aloe* mmmbt) 

The backtrack control structure is a well known combinatorial 
problem solving approach in computer science.  The strategy can 
be abstracted into a program schema with slots for lower level 
functions which is suitable for the automated synthesis of 
backtrack programs.  Employing a known model of program syn- 
thesis based on a problem reduction problem representation, two 
reduction rules are developed for transforming a (Continued) 

DO ,5 17n M73 COITION OF  1 MOV •• I« OBSOLETE 

S.-N  0102- LF-014-6601 1     SECURITY CLASSIFICATION OF THIS PAGE (When Oala «n«arac> 

• 



SECURITY CLASSIFICATION or THIS »A«K fWhaa Oat« fMan« 

i 

Abstract (Continued)  Block 8 20 

problem specification into a backtrack control structure with 
specification into a backtrack control structure with specifica- 
tions for lower level functions.  We illustrate these rules with 
sample problems. 

Accession For 
,.,.., , ,.   . 

DTI '• 
U 
,' 

* 

•>   N 0102- LF- 014-6401 

2     SCCuniTV CLASSIFICATION Of TMI» P»0«f»*»" ««• Knnn4) 

i 



Approved  for  Public  Release,  Distribution Uniitilted 

Toe  Desien of BacKtracic Aleorithms 

by 

Gary Loberg 
Captain, united States Army 

B.S., United States Military Academy, 19?3 

Suotiitted in partial fulfillment of the 
requirements for tne degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from tne 

NA7AI POSTGRADUATE SCHOOL 
June, 1983 

Autnor:  U?6**l CoMtyt  

Approved  by: zJiZzAzr— JL;-j£Cri:_  
ä ~        ~Tnesis  Advisor" 

• Second  Reader 

AJact^d. C - Ol&a£   N  
Chairman,  Department  of  Computer Science 

Dean of  Information  aJTcfe^Ss^Lry Sciences 



I 

ABSTRACT 

Tne bacKtracK control structure is a well snown 

combinatorial problem solving approacn in computer science. 

Tne strategy can re abstracted Into a program scnema witn 

slots for lower level functions wnicn is suitable for tue 

automated syntnesis of bacictracK programs. Employing a 

mown model of program syntnesis tasea on a problem 

reduction problem representation, two reduction rules are 

levelopel for transforming a problem specification into a 

fcacutracs control structure witn specifications for lower 

level functions. We illustrate tnese rules witn sample 

problems. 

_ J 



TAB Li' OF  CONTENTS 

I. INTRODUCTION    H 

II. THE PROGRAM SYNTHESIS SYSTEM    11 

A. THE PROBLEM REDUCTION MODEL    11 

B. PROBLEM SPECIFICATION    14 

C. THE PROGRAMMING LANGUAGE    15 

III. THE BACKTRACK CONTROL STRATEGY    ie 

A. STATS SPACE SEARCH    IB 

E.  GENERAL DESCRIPTION Of APPLICABLE PROBLEMS  - 20 

C.  GENERAL DESCRIPTION OF THE STRATEGY    23 

17.   A BACKTRACK REDUCTION RULE    29 

K.      SCHEMA DEVELOPMENT    29 

B. DESIGN METHOD FOR SUBSCHEMA SPECIFICATION  ~ 35 

C. THE K QUEENS PROBLEM    42 

D. THE PROCESSOR SEQUENCING PROBLEM    51 

E. SCHEMA LIMITATIONS    5B 

V.    AN EXTENSION TO BACKTRACK    62 

A.  PROBLEM REDUCTION PROBLE" REPRESENTATION    £2 

3.  SCHEMA DEVELOPMENT    7tf 

C. SUBSCHEMA SPECIFICATION    75 

D. A SIMPLE ARITHMETIC THEOREM PROVER    79 

71.   CONCLUSION    Ü4 

APPENDIX A - THE PROGRAMMING LANGUAGE    fc7 

3 



LIST OF REFERENCES      91 

INITIAL DISTRIBUTION LIST      94 

! 



LIST   OF  FIGURES 

1. K  QUEENS  Problem Representation      24 

2. General  BacKtracK Function      27 

3. BacKtracK  Proeram Scnema       35 

4. Reluction  Rule  Specification Senemas      43 

5. E  QUEENS  Problem Specification      45 

6. K QUEENS  Program  Specification      49 

?. PSP Problem Representation      54 

3. PSP  Problem Specification      55 

9. PSP  Pro er am Specification      39 

10. UND/OR  Grapn       6? 

11. Solution Grapns      67 

12. Theorem Prover Problem Representation      69 

13. BacJctracx  Pro?rar  Scftema      75 

14. Reduction  Rule  Requirements      «fe5 

15. Theorem  Prover  Pro*ram Specification       «3 

i 



t»   INTRODUCTION 

Tne bacKtracK control strategy nas aeveioped into one of 

tne major classes of algorithms since its first appearance 

in tne literature of computation. This nas been recognized 

by many autnors ana most current textoooKS on algorithms, 

including tnose by Ano, Hopcroft and oilman [Ref. lj and 

Horowitz and Sanni [Ref. 2], include substantial sections on 

tne strategy. SKili in tne development of bacKtracK 

aigoritnms can be as useful to programmers as tneir sKill 

with otner general algorithm classes, sucn as tne divide and 

conquer, greedy and lynamic programming control strategies. 

A minor goal of tnis paper is to furtner refine Knowledge of 

the structural relationsnlps witnin a oacKtracK aleoritnm. 

This expert Knowledge of bacKtracK programming 

techniques can also be used in tne program synthesis 

process. The problem reduction approach to program 

syntnesis detailed in Smith IRef. 3, 4j employs reduction 

rules in the form of algorithmic scnemas and supportin? 

neurlstic Knowledge concerning subschema specification to 

decompose a problem specification to a series of simpler 

specifications. Program solutions to tnese 

subspecifications are ultimately composed via tne scnema 

structure into a program satisfying the original 

specifications.  The major goal of this paper is to  produce 

S 



two such scnemas for tne nacKtracic control strateey ana two 

corresponding design methods for employing these Schemas. 

Tne first discussion of bacirtracK by ¥alJter [Ref. 5J was 

a fairly general description of a technique teen in use for 

ieciiin« combinatorial problems. Furtner descriptions of 

tne technique, sucn as Golomb and Baumert [Ref. 6J and 

Bitner [Sef. 7J were oriented towards tne efficiency aspects 

of tne stratesy. This approach to tne study of bacittracJc 

algorithms was reflected in texts on combinatorial 

algorithms, such as that by Reineold, Nievereelt and Deo 

[Ref. 8]. With this emphasis on the development of 

specialized techniques for improving efficiency the study of 

tne general properties of the bacittracJc class was 

overlooked. The paper by Gernart and Jelowitz [Ref. 9j 

reversed tnis trend. They developed a series of bacictracit 

scnemas differentiated oy tne type of control (recursive or 

iterative) and tne type of solution (first, all or optimal) 

desired. Tne empnasis was on tne development of scnemas 

proven to be correct along wltn general specifications for 

the subschemas wnicn would aid in proving tne correctness of 

the algorithms developed to complete tne program. 

This paper attempts to address two perceived gaps in tne 

understanding of bacittracJc algorithms. The first gap lies 

in the development of Schemas in a notation suitable for 

automated program synthesis. This notation snouid allow for 

simpler program verification techniques than tnose used  by 

I 



3ernart and Ifeiowitz. Tae scaemas saouid also be accompanied 

by heuristics for instantiation of tne scnema to satisfy a 

siven problem specification. Cnapters II, III and If will 

aldress tnese concerns by describing tne program syntnesis 

system (Caapter II), tae characteristics of a oacntracic 

algorithm (Chapter III) and a oacKtracit proeram scnema and 

associated design metaod (Chapter IV). The second sap lies 

in tae extension of tae bacKtractt strategy to solve a class 

of problems wnlca aave not generally been solved by a 

bacKtrac* control structure in tne past. Chapter V will 

develop a scnema and associated design metaod for searching 

a solution sraph of a problem with a hierarchical 

structure. Caapter VI will conclude this paper and point to 

further areas of research. 

10 



II. THE PROGRAM SYNXESSIS SISTJM 

Tne program syntnesls model for tnis research is toe 

problem reduction approacn as developed by Smith [P.ef. 10, 

11]. Tnis approach is an attempt to formalize tne 

programmin«» discipline of top down desisrn as a nierarcnical, 

problem reduction structure. A brief examination of tnis 

Tolei will nelp identify tae type of Knowledge required to 

syntnesize a oacstracK program. 

A.  TES PROBLEM REDUCTION MODEL 

Tue Key concept In tnis model is tnat program 

development by top down design is a problem reauction 

approacn to tne programming problem. Top down design is 

accomplisned tnrougn successive refinement of a problem 

specification into a series of simpler subspecifications. 

These subspecifications are related tnrougn control 

structures wnicn direct control tnrougn tne subprograms. At 

eacn step of tne refinement process tne subspecifications 

from tne previous step are furtner refined. Tnis continues 

until all are replaced by tne primitive constructs of tne 

programmine ianguase. Tne entire program Is tnen composed 

from tne primitive lan«ua*e constructs am control 

structures produced during tne refinement stages. 

A problem reduction problem soivln«? approacn attempts a 

solution by applying reduction  operators to a problem *oai 

11 



Statement. These reduction operators decompose tne goal 

into a number of simpler subsoals and additionally provide a 

frameworfc for composing tne solutions to tne sub«foals into a 

solution to tne original problem <?oal. Also required is a 

set of primitive operators which allow direct solving of a 

subgoal. By" successively decomposing a problem until a 

primitive operator can be applied to eacn subsoal and tuen 

composing tnese solutions witn the structure provided oy tne 

reduction operator, a solution to tne original problem is 

found. 

Tne analogy between problem red ction problem solution 

and top down design is obvious. Tne goal statement in a 

program syntnesis system is a formal specification of a 

problem. A primitive operator of a program syntnesis svstem 

is a proerammin* lansuaee construct. Tne reduction 

operators include a procedure for developing 

subspecifications (design strategy in Smitn [Ref. lüj , 

design method above) and a structure for composition of tne 

subspecification solutions. The structures cnosen for the 

reduction operators are program scnemas wnicn reflect tne 

different control strategies. Tne program syntnesis problem 

is to develop a program scnema/design metnod pair wnicn 

allows syntnesis of correct programs. 

A simple example should help Illustrate this process. 

Suppose our specification requires tne selection of the 

maximum of two natural numbers given as  input.  Tne  goal 

12 

t s 



specification may loot  UKe: 

MAX(A,B)  = c  such   tnat 
[A>=B   <=>   OA]      6. 
[B>A   <=>  C=BJ 

where  MAI:   (NxN)   ->   N 

Tnis specification for a function named MAX states tnat  *1AX 

tatres two natural numbers as  input ana  returns a  single 

natural  number.   Tne  logic specification consists  of a 

conjunction of two clauses.  fiacn clause must tnerefore be 

true for tbe output to  be  correct.   Botn  conjuncts  are 

logical equivalences,  wnicü reauires botn sides  of tne 

equivalence  to  be  true  or  botn sides  false for  tne 

equivalence to be true.  Tnus we nave a specification  in 

wnicn if A>=B, C nust equal A, and if  B>A,  C must equal B. 

Tnus C must be  tne maximum of A and B. If our programmin« 

language nad a suitably defined  function MAX(X,Y), tnen a 

primitive solution to tnis goal could be applied.   If not, 

tne goal must be furtner reduced to allow for solution.  One 

reduction rule wnicn could  be  applied  is a  simple 

conditional.  With tnis  rule a control scnema would  be 

imposed and  subspeclf ications would be developed for  tne 

scnema slots.  Tne scnema may looi liice: 

if ? 
then F 
else 5 

tfnere P, F, S are functions  tne  rule will  specify.  Tne 

specifications produced by tne rule may be: 

13 

L , 



P:(A,B) = b sucn that 
[A>=B <=0> bj 

where P:(NxN) -> B 

F:A * c such that 
U = CJ 

where F:N -> N 

G:B = C  sucn tnat 
[B = CJ 

where F:N -> N 

With these specifications P can  be directly solved  by a 

simple relational  operator and F and 5 can oe solved by an 

assignment operator, and tne final program produced will be: 

MAX(A,B) = 
if A>=B 

tnen C <- A 
else C <- BJ 

return C 

B.  PROBLEM SPECIFICATION 

Tne program synthesis system requires a formal 

specification of a problem. This formal specification is a 

logical description of the input/output relationships for 

the program. The following format will be used to specify 

problems In this paper: 

F:x = z such tnat Itx  => 0:<x,z> 
where F:D -> R 

In tnis Instance, F is tne name of tne specification and the 

: operator Indicates function application. 

There are four components to a formal specification. 

The input condition I details all mown properties of 

objects input to the program. If tne input condition 

applied to soue object t is  true,  tnen  tne program must 

14 

i 

I     I 



produce tne specified output. In many cases tne input 

condition will De vacuously true. Tne output condition 0 

specifies the relations tnat are expected to noid oetveen 

tne input objects and tne output objects. Tne domain D 

specifies tne data type of input objects and tne ranee R 

specifies tne data type of output objects. Tne program 

syntnesis system will attempt to derive a program F wnicn 

talces as input an object of type D and produces as output an 

object of type R. If tnls input object satisfies tne input 

condition tnen tne output condition applied to tne input and 

output objects will be true. 

C.  THE PROGRAMMING LANGUAGE 

Tne target programmin? language for this system is a 

functional language similar to Bacfcus' FP notation (.Ref. 

13J . A functional language provides several advantages to 

tne program syntnesis process. Tne most significant is tne 

relative ease of program verification. Altnougn not a 

trivial taste, tne proof teenni^ues are more manageable tnan 

tnose for procedural languages. Tne principal reason for 

tnls lies in the nature of expressions. A functional 

program constitutes a single expression. Within tnls 

expression all occurences of a name or subexpression nave 

the same value. Thus tne statement by statement state 

changes within a procedural language wnicn create most of 

the difficulty In program verification do not exist witn 

functional programs.  Tnis permits  an algebra of functional 

15 

E .. ! 



programming, as iJacsus further discusses [Ref. 14J vnicn 

permits use of trie language as a proof tool. A second 

advantage lies In tne nierarcnlc nature of functional 

lan*ua*es. Higher level functions are constructed from 

lower level functions and appropriate combining functional 

forms. The reduction rules in tne syntnesis system are 

actually methods for producing specifications for lower 

level functions and scnemas wnicn connect tne specifications 

with the appropriate combining forms. 

A functional  language contains a set of five components 

[Ref. 15J, wnicn are: 

1. a set of objects 

2. a set of functions 

3. tne application operation 

4. a set of functional forms 

5. a function definition mecnanism 

The functional  lan*ua*e used is fully described in Appendix 

A. Tne following paragrapns  nigniigat tne major differences 

between uacius' notation and tne language notation used. 

*•  Set of Objects 

The set of objects in tnls language include specific 

lata types. The particular data types whicn will be 

necessary in this paper are N, tne natural numbers, LIST(N), 

lists of natural numbers, I, tne integers and B, the boolean 

values true and false. Also Included is tne data structure 

<>, sequences of objects. 

16 



2«  Set of PrijTiiiive. Fuflcüflns. 

The set of primitive functions are tied to tne 

various data types and structures. A complete set of 

functions is given in Appendix k. 

3« la!  AEEiic.atio.fl Ofle.rai.ioa 

Function application Is enhanced by allowlne tne use 

of named parameters in botn tne application and definition 

of functions. Tnis deviates greatly from Bacicus' 

intentions, but obviates much of the use of selector 

functions in data manipulation. At the least it increases 

tne clarity of function definitions. K further motivation 

is the Knowledge tnat efficient algorithms [Ref.16] exist to 

extract named parameters from function definitions. A 

declaration mechanism is also included to allow for 

controlling name visibility. 

*•  I&§ Function SÜifiliiPJl ^§cnanlsm 

An anonymous function definition mechanism, similar 

to the LISP lambda function, is included.  The syntax is: 

(lambda <parameter list> 
{function definition}) 

(actual parameter list) 

This will be most useful for schema expression, as it allows 

for fully specifying a lower level function within a  nlgner 

function.  In tne bacirtracir scnema we snail use tnis feature 

to express a lower level function In terms of its component 

functions, tnereby directly expressing ail components of tne 

Dacictracir strategy and their relationships. 

17 

: 



III. THE BACKTRACK CONTROL STRATJGT 

The bactrtract control strategy is essentially a 

technique applicable to combinatorial problems. A bacfftracK 

algorithm will conduct an uninformed search of a state space 

to select  tnose  states  which  satisfy  tne  problem 

constraints. The advantage of a bacKtradcin* al^oritnm over 

other uninfomed searcn techniques is that it can employ the 

problem constraints to prune tne state space tree, thus 

reducing tne amount of search required. 

A.  STATE SPACE SEARCH 

h state space problem representation attempts to define 

a problem tnrougn description of tne various states of the 

problem world and methods in tne problem world for 

transforming a given state into a new state. In tne 

computer solution of state space problems tne fundamental 

concepts are the symbolic representation of tne relevant 

aspects of the problem state and the computation of 

permissible state transformations. These permissible 

transformations are problem world related in tnat tftey 

represent transformations tne problem world wouil permit. 

for example, a permissible transformation may well lead to a 

problem state wnicn violates a constraint, but is an 

allowable action in tne world being modelled. Tne solution 

technique most often used to solve state space  problems  is 

ie 

_. 



e 

some form of searca. Tae searca commences at a given 

initial state and proceeds tarou*n a directed *rapa,. wßere 

tae grapa nodes represent tae possible states and tne arcs 

represent tae permissible transformations. Tae searca 

terminates waen a goal state is reacaed. 

in illustrative example is tae missionaries and 

cannibals problem. In tnis problem we are given an equal 

number of missionaries and cannibals on a river ban« and. a 

boat waica can aold at most two persons. Tae goal is to get 

all missionaries and cannibals to tne otaer bane witaout 

leaving more cannibals taan missionaries on eitner can« at 

any time. To represent tnis problem witn a state spac 

representation we must identify tae relevant aspects of 

state and develop a symbolic representation for tnem. We 

must also develop routines to compute allowable 

transformations between state descriptions. Tae solution to 

tnis problem will be a sequence of transformations «mica 

move tae missionaries and cannibals from one ban« to tne 

otner and wfticn do not violate tne problem constraints. 

A number of tecbniques exist for searcning state space 

grapas. Taey differ principally in tne tecnnique used for 

selecting wnicn already visited state to expand, or to 

transform to a new state. uninformed tecnniques suca as 

ieptn first, breadtn first and generate and test searcn 

transform trnown states in an arbitrary and fixed manner. 

Tae bacutracS stratesy, as we snail see, is an example of an 

iy 



uninformed search.  An informed  tecnnique, sucn as test 

first search, will use some type of Knowledge to  evaluate 

the Known states and select tfte most promising of tnese for 

expansion.  Tne decision of wnetner to use an informed  or 

uninformea searcn is most often a function of tne  proolem 

and now well searcn Knowledge can be codified. 

B.  GENERAL DESCRIPTION OF APPLICABLE PROBLEMS 

BacKtracs is suited  for tne  solution of ^omoinatorial 

problems  wnicn exhibit  certain cnaracteristi^s.  Tnese 

cnaracteristics  include tbe ability to segment tne  proDiem 

into a  set of discrete  out  interrelated decisions,  a 

solution structured as a vector of decisions, and a set of 

testable solution constraints  which  relate  the  le^ision 

elements. 

1 •  PIP.USE £älläcier.is_ii.c-s- 

Representatlon   of  a   problem  as  a   set   of 

llscrete decisions structures tne problem intc a tree search 

problem.  Eacn node of tne tree represents a d°cislon to be 

made and eacn arc fron  tnat  node  represents  a different 

alternative solution.  In  tne missionaries  and cannibals 

problem a node may represent  tne decision: wno gets In tne 

boat to go to tne opposite river bant?  Eacn arc represents 

a different alternative: one or two missionaries, one or two 

cannibals or one missionary and  one  cannibal.  By forcing 

this  tree structure  onto  the  problem,   ba ritt rar Kin* 

algorithms do net nave to be concerned with maintenance of 

20 



solved node lists or ottier storage outside tne patn from tne 

current node to tne root of tne tree. In fact, tne state 

space tree Is Implicit In bacKtraci aigorltnms and not 

explicitly stored. 

Representation of tne solution by a vector of 

decision solutions corresponds directly to tne patn in tne 

state space tree explicitly stored at any time by a 

bacKtracK algoritnm. In our state space model tnis patn Is 

tne current state. Tnis direct solution representation 

nrecludes a requirement to construct a solution once tne 

searcn nas concluded. 

Tne problem defined constraints on solution element 

relationsnips allow bacitracK algorithms to test tee current 

ssauence of decisions (patn fron root to current rode^ and 

prune tne implicit searcn tree witnout explicitly examining 

all nodes of tne tree. Tne time efficiency of a backtrace 

aleorithm, measured by tne number of nodes examined, is a 

function of now well constrained tnese relationsnips are. 

The tighter tne constraints, tne less nodes will be 

examined. Witnout constraints, tne algorithm will examine 

all nodes of tne state space tree. 

2.  K QUEENS Problem He.p.r»sentatiori 

An example representation will illustrate now a 

simple combinatorial problem can be represented for solution 

by a bacttracic algorltnm. Tne problem, traditionally used 

to  explain  bacxtracir,  is  tne K 0UE5NS  problem.  Simply 

21 



stated, tue £ QUEENS problem is to find all possible board 

positions on a KxK cnessboard for K aueens sucn tnat no 

queen attacks any otner queen. From tne rules of cness, we 

must find all positions sucn tnat no two queens are or. tne 

same row, on tne same column, or on tne same diagonal. 

To represent tnis as a series of decisions we note 

tnat no two queens may be on tne same row. Also, if we are 

to place E queens on a KxK. board, tnere must be at least one 

queen on eacn row. It follows tnat tnere must oe one and 

only one queen on eacn row of tne board. Therefore, tne 

decision to mane at level i of tne tree is wnere to place 

tne queen on row i. 

Tne solution vector returned will be a patn from tne 

root to a leaf of tne tree. Position i of tne vector will 

represent tne positioning of tne queen on row i. Tnus tie 

solution will nave tne form 

X = (x(l), x(2) x(K)) 

wnere eacn x(i) is tne position (coiumn number) of tne queen 

on row i. 

Tne constraint relationsnips can also be determined 

from tne rules of cness. Tnese constraints reflect tne 

facts tnat no two queens can oe on tne same column or 

diagonal. To express tne column constraint in a computable 

form we note tnat our representation would aepict two queens 

in tne saire column as two elements of tne solution vector 

saving tne sa-ne value.  He    can  restrict  tnis  witn  tne 

22 



constraint: 

column constraint 
FOR MI x(i),x(j) IN X 
[l*j => x(i)*x(j)J 

Tne diagonal constraint is a  little more difficult.  Two 

queens are on tne same diagonal if tneir row distance is tne 

same as their column distance.  For example, queers  at  row 

and column positions (l 4)  and  (3 6)  are on tne same 

diagonal as are queens at positions  (1 4) and (3 2). Ve can 

t&us subtract tne queens' row numbers and column numbers and 

tnen compare tneir absolute values to determine if tney are 

on  tne same diagonal.   Tais  gives  us  tne  diagonal 

constraint: 

diagonal constraint 
FOR ALL x(i>,x(j) IN X 
[i*j => abs(l-j)*abs(x(i)-x(j)) 

One final constraint identifies a patn  as  a  solution and 

tnus may be  termed a solution constraint.  Tnis constraint 

is identified  by  the fact that K lecisions must oe male to 

place £  queens  on  tne  board.   A.  computable  solution 

constraint  is  tnus   lengtn(X)  =  J.  The  complete 

representation is given in Figure 1. 

C.  GENERAL DESCRIPTION OF THE STRATEGY 

BacKtracic is best defined as an uninformed, emaustive, 

deptn first tree search strategy. The strategy is 

uninformed, in that it does not employ problem specific 

Knowledge about now to searcn for a solution state. It is 

exnaustive in that it will implicitly or explicitly examine 

23 



all possible solution states as it executes. It is a tree 

searca strategy because it implicitly structures trie p-rociem 

into a tree wnicft represents solution states by a patn from 

tne root to a leaf. It is a deptn first strategy because it 

fully examines a subtree defined by one alternative before 

it begins examination of tne next alternative. 

DECISION STRUCTURE 
decision(i) = column placement for queen on row i 

SOLUTION STRUCTURE 
<X> wnere eacn X = (x(l), x(2), ... ,x(S)) 

wnere x(i) • column number for queen on row l 

CONSTRAINT STRUCTURE 
element constraints 

FOR ill x(l),x(j) IN  X 
[i*J => x(i)*x(l)J 
li*fj => abs(i-j)*abs(x(i)-x(jM] 
[1 <= x(i) <= KJ 

solution constraint 
len,etn:X • E 

FIGURE 1 
EC QUEENS Problem Representation 

A bacfctracu s*rateey attempts to construct a solution 

vector one element at a time. After decidim? on one 

element, tne strategy will expand tnis solution one element 

furtner. If tne strategy determines no expansion is 

possible and a complete solution nas not teen acnievea tr.en 

it will bacitracK, cnange its most recently made decision, 

and try to expand tne new partial solution. 

To implement tnis strategy, a oacKtracic aleoritnm tanes 

as  an  input parameter a lescription of tne patn from tne 

24 

- 



root of tne state space tree to tne node beine expanded. 

The algorithm will expand tnis node by creating descriptions 

of all possible patns from tne root through tne expanded 

node with ienrth equal to one greater tnan tne parameter 

patn. Tne algorithm will tben examine these new patns in an 

arbitrary order. Tnis examination first tests tns patn for 

a solution and returns tne patn if it is founc to De a 

solution. If not a solution, it tests for any violation of 

a predefined subset of tne problem constraints. If a 

violation is found, tne aigorltnm determines no solution can 

be found witn further exploration and terminates searrh on 

tnis patn and all possible extensions. If tnere are no 

constraint violations, tne patn is recursively expanded to 

searcn for a solution deeper in tne tree. 

Recursion is tne natural form of expression for 

bacirtracic algorithms. Usin* stanaard program 

transformations Horowitz and Sanni IRef. 1?J ana Gemärt and 

Yelowitz [Ref. 18j nave developed iterative bacKt racxin* 

procedures from tneir recursive algorithms. Tnis paper, 

since it is not concerned with efficiency Issues, will 

levelop algorltnms and scnemas in recursive notation ana 

leave for later program transformation worn tne translation 

into iterative notation. Witn tnis in mind. Figure 2 slves 

a simple bacKtr^cK function in a procedural notation. 

The efficiency of a bacstracic algorithm principally 

depends on now tne patn element constraints container in tne 

25 

« 



predicate FEASIBLE are defined. The pruning efficiency of 

tne predicate is directly related to tee degree of 

constraint being tested. Tne more constraining tne 

relationships, the more pruning will be accompllsned. As 

discussed above, the pruning constraints will often be a 

subset of tne total problem constraints. For these reasons, 

a good neuristic is required for selecting tne appropriate 

constraints if a good DacKtracaing algorithm is to be 

leveiopei by a programmer or an automated synthesis system. 

A syntnesis design method based on such a neuristic is thus 

desirable. 

The computation of tne predicate FEASIBLE nif-nlights one 

further characteristic of the strategy. The reiationsnips 

expressed in the predicate often involve data about tne path 

elements. This data must be visible to the predicate, wnicn 

normally implies extensive parameter passing at eacti call of 

tne function. The data relevant to each element of tne path 

is very often static, nowever. The data can be seen as 

properties of tne separate elements, and the constraining 

reiationsnips as reiationsnips between tne elements' 

properties. For tnis reason, many bacittracKin* aleoritnms 

establish these properties as global data, weich can be 

accessed from any level of tne recursion. 

25 



PROBLEM (PARM LIST)  <-  BACKTRACK (NIL) 

wnere 
FUNCTION BACKTRACK (PATH) is defined as 

ALTERNATIVE_SBT <- GENERATE (PATH,PARM_LIST) 
/* generate is a function wöicn will return all 

extensions to PATH «7 

SOLÜTION_SET <- {)! 

FOR P IN ALTERNATIVE_SET DO 

IF  SOLUTION   (P) 
THEN   SOLtfTION_SET  <-  SOLCJTION_SET  U   {?} 

/*  solution  is  a  predicate  wtiicii   returns 
true  if   tne  parameter  is  a  solution 
to   tne problem •/ 

ELSE 
IF  FEASIBLE   (P) 

THEN SOLOTION_SET <- 
SOLOTION_SET   Ü  BACKTRACK   (P); 

/* feasible  is  a  predicate  wnicn  returns 
true  if   tne  parameter can  oe expanded •/ 

END FOR; 

RETURN   S0LUTION_SET; 

END  BACKTRACK 

FIGURE  2 
General   BacKtracK  Function 

Tne  al*oritnm descrioed  above  is  a  simple description of 

a     baclrtraclE    strategy wnicn  returns  all     solutions     in     tne 

problem      defined     state     space.       Two     otner    variants       of 

bacfctract    often    arise.     Tne  first  variant    is    a     strategy 

wnicn     returns     only     tne  first     solution    discovered.       Tne 

second     variant  returns  only  tne   best  solution     encountered, 

wnere     tne     solutions    nave     been     ordered     by  seme     scoring 

27 

-- 



function. Botn of tnese variants require additional control 

features wnlcn complicate tne basic bacsttracir stratee? and 

will not be furtner discussed in tbis paper. For tr.ose 

interested, Gernart and Yelowitz [Ref. 19J provide furtner 

discussion of this topic. 

28 

i 



IV. A BACKTRACK RSDy_CT.ION RULE 

A reduction ruis for implement in« a bacKtracc algorithm 

nas two components, tne program scnema and tae design method 

for subscnema specification. Tnis chapter oevelcps a scnsma 

for a simple bacstracic algorithm with slots for three 

subal*orithms. A design metnod is tnen presented for 

reducing tne problem specification into subaigorithm 

specifications. Tne -netnod is based on an examination of 

the required relationships of the three suoalfforitnms. Two 

problems are tnen examined to illustrate tne application of 

tne reduction rule. 

A.  SCHEMA DEVELOPMENT 

In developing a program scnema one approach is to 

describe completely tne expected input to tne schema, tne 

desired output from tne scnema and tne series of 

transformations on tne input tne scnema is required to 

perform to produce the output. These transformations can 

tnen be translated into lower level functions connected by 

tne language combining forms. Tne following paragraphs 

derive a scnema in tne desired functional language using 

this procedure. 

From  the  general discussion of  tne  oacictracK 

strategy (see page 23) we can lescribe  tne expected  input 

29 

I 



and its salient characteristics. Wnen a bacfctracK function 

is invoked it is passed one parameter, a vector 

representation of a partial solution to tne problem. We 

will call this vector PATH, since it is a patn from tne root 

of tne state space tree to tne last node (last element of 

tne vector) examined. PATH is of untnown length, since the 

function is called at every level of tne state space tree. 

A null P4TH can also exist, wnicn Indicates no decisions 

have yet been made. Tnis is tne problem state wnen tne 

initial invocation occurs. 

Mtnougn tne lengtn of PATH is unknown, taere are 

cnaracteristics wnicn can oe inferred. Tne most significant 

is that PATH nas been determined not to be a solution. If 

the previous invocation of tne function nad determined tnat 

PATH was a solution then tne function would nave terminated: 

prior to the recursive invocation we are -oncemed wita. A 

second caaracteristic is that PATH meets tne test or the 

predicate feasible. A major assumption of tnis design 

method is tne conclusion tnat altnougn PATH may not satisfy 

all tne output conditions required by tne problem 

specification, it satisfies a major subset of tne 

conditions, Furtnermore, there is reason to expect tnat an 

expansion of PATH will eventually satisfy all tne output 

conditions. Tne current oacKtracic Invocation must tnerefore 

searcn for all sucn expansions. 

30 



i 
Another input issue concerns the problem data wnich 

will be required by tae lower level functions.- The 

assumption made in tne development of tnis paper is mat 

t&is data will be made global. Figure 2 (see page 27) 

demonstrates now tnis is accomplisned. Ali program 

specifications developed will declare tnis data as a 

parameter to tne program, tnen declare tne BACKTRACK 

function and lower level functions at tne same scope level, 

providing tne required visibility. Tbe alternative is to 

declare tne data as input to BACKTRACK and pass it as a 

parameter to every recursive call of tne function. In tne K 

QUEENS example tne only data is tne value of K. The cost of 

passing tnis parameter will be minimal. In other examnles, 

sucn as the Processor Sequencing Problem we discuss later, 

the data is mucn more extensive and tne parameter passing 

costs are higher. In any case, it is simpler to consiier 

this data as global and not oe concerned with tne mecnanles 

of creating parameter lists. 

2.  Th« Desirgd OutpjU 

The output from a bacKtracK aisorithn is also a 

patn or list of patns. These paths, in vector form, 

represent all possible solutions to tne problem. Each 

invocation of tne oacntracfc function examines a suotree of 

tne state space tree to search for an extensioc to PATH 

wnicn terminates in a solution. Tne snorter PAT? is tne 

deeper the subtree examined will be.  In any  subtree  there 

31 



is a possibility of zero, one or more solutions vnicn will 

be returned to tne invocation examining tnat subtree-. Tne 

backtrack function must compose these separate patn 

solutions into a list of subtree solutions. 

3«  lüEüi Transformations 

The input transformations are also apparent from 

tne strategy description (see pa«re 23). Tnere are tnree 

transformations to perform. T&e first of tnese is an 

expansion of tne current partial solution by one additional 

decision. At tne simplest level tnis transformation must 

produce a set of all patns wnicn are possible expansions of 

PATH. Eacn patn in tnis set represents expansion of tne 

partial solution Dy one additional decision element. Eacn 

possible decision is represented by a corresponding element 

in tne set. The result of tnis transformation is a set of 

patns to be examined. 

The second transformation is to execute a series of 

conditional tests. Tnese tests perform tne examination of 

eacn patn produced by tne first transformation. The 

significant cnaracteristlc of tne strategy is tnat tne tests 

and resulting action are completed for eacn patn before any 

processing begins on any otner patn. We will can tne patn 

under consideration T5ST_PATH. Tne tests and actions can be 

subdivided into two sets. Tne first set tests for a 

solution. If a solution is discovered, tne action is to 

return TEST PATH. If tne first test fails,  tat second  set 

32 



tests for feasibility of expansion. If tais test deciles 

expansion is feasible, tne bacictracK function is recursively 

called with TEST_PATH as the parameter. If tne test fails 

no further expansion is feasiDle anl the nil path is 

returned to signify no solution is found. 

Tne final transformation is required to eliminate 

tne nil patns in tne solution once all  expansions nave ceen 

examined.  After this transformation  is complete, the value 

returned will consist of a list of solutions. 

*•  Scnema !r.ans.latio.n 

Translation into a program schema requires grouping 

desired transformations into lower level functions and 

specifyin? the appropriate functional forms for relating tne 

inputs to and outputs from tne functions. Tne atiiity to 

separate the bacKtracK strategy into three transformations 

of the input implies that we -an define three lower level 

functions to perform the transforms. Trie following 

paragraphs develop these three functions and the proper 

combining forms. 

The first transformation operates on tne input to 

the schema, the parameter PATH. Tnis allows specification as 

a direct function application to tne parameter. The output 

of this application is to be a list of ail patns wnlcn are 

expansions of PATH. Since the operation is to venerate all 

possible expansions, we will name tnls function GENERATE. In 

our lan*ua*e notation tnls is: 5i'NSPATE:PATH. 

33 



Tne second transformation operates on tne output cf 

the function GENERATE. Its metnod is to operate on an 

element, return a value, operate on tne next element, return 

a value and continue until tne list provided Dy GENERATE is 

exflausted. Tnis operation is clearly an example of tne 

APPLT-TO-ALL functional form available in our language. 

Since tne operation is a test of eacn element of tne list we 

will name the function TEST. In our lan*ua*e notation tnis 

is: 

<*TEST (GEN ER ATE : PATH ) 

We fcnow more about tne benavior of tne function TEST, 

however. TEST is a conditional function with two 

predicates. We can furtner specify TEST within the schema 

by employing this Knowledge. Tne first predicate is a 

solution test. Tne resulting action is to return tne path 

if the predicate holds.  In our language this is: 

SOLUTION:TEST_PATH -> ID:TEST_PATH; 

Tne second test is a cneclc for feasibility.  The action is 

to recursively call tne bacjctrac« function with the patn as 

parameter.  This can be expressed in our language as: 

?EASIBLE:TEST_PATH -> BACKTRACK:TEST_PATHJ 

The final action of tne function is  to return nil.  Th»» use 

of an anonymous function definition will allow definition of 

TEST vitnln the schema as follows: 

<*(lambda<TEST PATH> 
{(SOLÜTION:TEST_PATH -> ID:T£ST PATH? 

FEASIBLE:TEST PATH -> BACKTRACK:TSST_PATH; 
NIL)}) 

(GENERATE:PATH) 

34 

-. I 



Tne final transformation eliminates all null lists 

in the list returned by tne partial scnema aoove.- Tr.e 

appropriate lower level function and combining form already 

exist in our lan*uaee. Tne functional form INSERT will move 

the function APPEND through tne list and eliminate ail n:il 

list occurences. All that is required is to -orpose tnis 

function and combining form onto tne partial scnema to 

produce tne oacrtracic scnema of Figure 3. 

i i 

!  BACKTRACK:PATH ! 
I     /APPEND ! 
!     ((X(lambda<TEST PATH> ! 

{ (SOLUTIÖ"N:TEST PATH -> ID:TEST_?ATE; | 
!              FEASIBLE:TEST~PATH -> BACKTRACK :TEST PATH;  | 
!              NIL)}) ! 

(GENERATErPATH) ) 
i i 

FIGURE 3 
BacKtracK Program Scnema 

B.  DESIGN METHOD FOR SUBSCHEMA SPECIFICATION 

Tne schema developed above is only one component of tne 

required reduction rule. Also necessary is a lesisn metnoa 

for specifying tne lo*er level functions GENEPATE. SCL'JTION 

and FEASIBLE. A rule for derivation of these 

suospeclfications must be based on tae expected input and 

output of tne functions and tne reiationsnips between the 

functions wnicn tne scnema exploits to sclve tne problem. 

Tne reduction rule developed in tne following paragrapns 

builds from tnese reiationsnlps. Tae rule provides a 

specification schema for eacn for eacn lower level function 

3b 



and a metnod for Instantiating tne scnema* for a eiven 

problem Instance. The metnod is a pattern matcnmg process 

wnicn replaces references to tne problem speciflcatnr. In 

tne scnemas wi tn tne referenced components of tne problem 

specification. In developing tne scnemas tne notation used 

below is tne same as tne problem specification notation, 

witn two additions: Capital letters refer to tne components 

of tne specification and lower case letters refer to tne 

function or problem specification. Tnus Op refers to tne 

output condition of tne problem specification, wnile Os. Of 

and Os refer to tne output conditions of tne functions 

SOLUTION, FEASIBLE and GENERATE respectively. 

1.  SEN ER ATE gflge^f legion S^ascä 

To derive a general aeurlstic fir specifying tne 

GENERATE function we need to closely examine tne output 

requirements for tne function. BacKtracx requires GENERATE 

to produce all single decision extensions to PATH. It is 

significant tnat GENERATE is tne only function in tne scnema 

wnich produces output. Eacn element of tnis output is a 

potential solution. Tne implication is tnat GENERATE must 

perform all computation require! to const uct a decision 

element and append it to PATH. Tnis computation may require 

incorporation of constraints from tne problem output 

condition. Tne K QUEENS problem provides a simple example. 

In tnis problem tnere is a direct constraint on tne value &f 

tne decision alternatives, tnis oein* tnat tne column number 

36 



for each decision must be between one and K. Failure to 

include tnis constraint in GENERATE may result ia the 

production of an infinite sequence of patn extensions. 

A neuristic to support this reasoning can be 

designed. If a constraint exists wnich places direct 

restrictions on tne computed value of a decision element 

tnen tnis constraint snould be included in tne specification 

for GENERATE. Vnat constitutes a "direct restriction" is not 

well formulated, but two general principles are offered. If 

a constraint restricts a decision element 07 a specified 

relation to constant values, tnen tnis is a direct 

restriction. The K QUEENS constraint above fails in tnis 

category. Secondly, if a constraint is formulated as an 

equality between a decision element and a computable value, 

tnen the constraint directly restricts the decision. We 

ill snow an example of this later. On a more eenerai note, 

the issue of which function to include constraints in is a 

major point of concern to algorithm designers and is further 

addressed in the section on schema limitations. 

Tnere are otner output conditions for tne GENERATE 

function. If GENERATE is to produce s"nele dec.ilcn 

extensions to PATH tnen tne length of eacn element of tne 

output must be one greater man tne lengtn of PATE. Also, 

eacn element of the output minus its last decision is eauai 

to PATH. A clean symmetry exists between these constraints. 

Vfe nave restricted tne size  of eacn element of the output. 

37 

w 



tae value of tae last decision of eaca element,  and ttte 

values of tae  rest of  tae decisions.  Tnls  sugeests  a 

completeness in  tne  specification.  Tae  complete  output 

condition Oe can be expressed as: 

Qe  = TOR ALL TEST PATH  IN  PATH LIST 
[lengtn(TEST~PATH) = i+lengtn:PATH S, 
tlr(TEST PATH) = PATE & 
Op?(lastTTEST_PATH))J 

waere Opg = subset of Op wnicn directly 
restricts a decision 

Taere are certain conditions mown to De true of tae 

input. As discussed in tne paragrapn on scaema development 

PATH is Known to be feasible. Tnis fact may be used Dy tae 

syntaesis system and needs to be represented as an irput 

condition. Tae specification input condition is tons: 

FEASIBLE(PATE) 

To derive tne domain ana ranee of GENEPATE we need 

to examine tne relatlonsnips between tae input and output of 

tae function anc tnose of tae prooiem. Generate accepts as 

input a patn representation for waicn it is to generate 

allowable expansions. Mtnougn not a solution, PATH is tae 

proper type of a solution. Ve can discover tae solution 

type by examialne tne ranee of tne problem. Tae problem is 

to produce a seauence of solutions. Tne range of tae 

problem Is tnus a sequence of tne desired type. Given a 

problem ranee of <Y>, wnicn signifies a sequence of oojects 

of type I, waere I is a laneuaee type we can °xtra~t Y as 

tne domain of GENERATS. Tae function rnust output a  sequence 

38 



of objects, eacn of wnicn is a potential  solution.  Tnis is 

tae same output  type as tne problem and tue pro Blew-range 

can be substituted for tne range of GENERATE. Tnis  produces 

a domain and range specification of: 

Dg = Y wnere Rp = <Y> 
Rg = Rp 

Tne complete specification scnema is give^ in Figure 4. 

2.  SOLUTION Sjaecifi cation Scnema 

Tne function SOLUTION is tne simplest of tne  lower 

level functions to specify since it relates directly to  tee 

entire problem specification.  SOLUTION  is a function wr.icn 

accepts a patn representation as input aud returns a tooiean 

value.  Tne representation  SOLUTION  tests is tne same type 

as tne elements of tne problem domain.   In  tne  5 QUEENS 

problem, for example, tne problem  ranee  is  <IIS?(N>>.  '*'e 

want tne program to produce a sequence of lists, wnere eacn 

list is a  solution.  Tne correspondine domain for SOLUTION 

is simply LIST(N). Since toe function  is  a  predicate,  it 

•rust return a boolean value.  Tne domain ant  ranee can tnus 

be specified as: 

Bs • I wnere Rp = <Y> 
Rs * B 

To derive tne input and output specifications we  note  tnat 

SOLUTION must return true wnen tne problem output conditions 

applied to tne parameter TEST_Pft.TH are true and must  return 

false wnen  tne problem output conditions  applied  to  tne 

parameter are false.  Tnis can be erpressen as a  logical 

39 

. 



equivalence  between  tne  boolean value  returned and  tne 

problem constraints applied  to  tne  parameter TEST^PATE. 

Since some of the constraints may be included in GENERATE, 

we need only include tne  subset  not in GENERATE. Tne input 

condition follows from tne  input condition  to GENERATE. 

Since  t&e  input to GENERATE is Known to be  feasible,  tne 

input to SOLUTION minus tie last element must  oe  feasible. 

Tne input and output conditions may be expressed as: 

Is = FEASIELE(tlr:PATH) 
Os = Ops(TEST_PATH) <=> b 

where Ops = subset of Op not included 
in GENERATE specification 

The complete specification schema is ?iven in Figure 4. 

3-  FEASIBLE S.Be£if_lc.aiian S_ch.e.ma 

The specification of FEASIBLE is more difficult than 

tnat for SOLUTION oecause the feasibility test is  the  less 

constraining of  the  two.  An assumption of  tnis  design 

-netnod is tnat FEASIBLE is a relaxation of  the  constraints 

represented 07 SOLUTION. One  rule for relaxing restrictions 

is to eliminate one or more expressions within a conjunctive 

statement of constraints.  We attempt to develop a neuristic 

for  iientifyins whim  conjunct  or  conjuncts  of  the 

constraints  stated in  the problem  output  conditions  to 

include in tne feasibility test. 

Tne bacirtracit scnema expects certain cnaracteristics 

of the path bein* investigated.  A path which  is  feasible 

yet not a solution falls to meet one or more of tne  output 

40 



conditions. However, it is feasible tnat an expansion of 

tne patn -nay meet all tne output conditions. i- pain 

determined to be unfeasible also fails to meet one or more 

of tne output conditions. Tne difference is tnat an 

unfeasible patn will never meet all tne output conaitions, 

no matter wnat sequence of decisions is appended. If we can 

specify tne type of condition wnicn, wnen failed by a 

partial solution will also be failed oy any extension to 

that partial solution, tnen tnis Knowledse can be added to 

our reduction rule. 

A heuristic can be formulated to express tnis 

Knowledge. A. constraint wnicn addresses tne solution as a 

wnole is not of tnis type. If tne patn as a single entity 

fails a condition, tnen any expansion to tne patn produces a 

different entity, and may pass tne condition, A constraint 

wnicn limits tne relations between tne parts of tne solution 

is of tnis type, nowever. If a partial solution exnicits a 

conflict between two elements tne same conflict will etist 

no matter wnat subsequent elements are appended to tne 

patn. The conclusion is tnat tne appropriate constraints 

are a subset of tne problem output conditions and can ce 

selected by an heuristic process wnicn retains only tnose 

constraints wnicn relate elements of tne proposed solution. 

Tne input and output conditions can be expressed as: 

41 



If  = FEASIBLE(tlr:PATH) 
Of   =  Opf(TEST_PATH)   <=>   b 

wnere  Opf  =  ail   conjuncts   of Op  wnicfc 
relate elements  of  TEST_PATH 
and  are   not   In  GENERATE- 

Since       FEASIBLE is     a     component       of     tne       sane 

conditional     expression as SOLUTION,   tne  domain  remains     tne 

same.     Since it is  also    a predicate,   tne  ran<?e  remains   tne 

same. 

Df = T wcere Rp = <Y> 
Rf = B 

Tne complete specification scnema is eiven in Firttre 4. 

C.  THE E 3UEENS PROBLEM 

Our first example to illustrate tne use of tnis 

reduction rule will be tne £ QUEENS problem discussed 

earlier. The format to be followed in presenting tnis and 

later prooiems will be to represent tne problem witn tne 

structure in Figure 1, develop a formal specification of tne 

problem, and tnen apply tne reduction rule of tne two 

previous paragrapns. Tne output will be a program 

satisfying tne problem in tne form of tne bacKtracK program 

scnema witn formal specifications for tne lower level 

functions. 

42 

- 



GENERATE SPECIFICATION SCHEMA 
GENERATErPATH = PATH LIST  sucn tnat 
FEASIBLE:PATH => 

FOR ALL  TEST PATH  ELEMENT OF  PATH LIST 
[lengtnTTEST_PATH) = 1+lengtn(PATH) & 
tlr(TEST_PATH^ = PATH 4 
Opg(last(T£ST_?ATH))] 

wnere  GENERATE:T -> Rp  sucn tnat Rp = <T> 
and  Ope = subset of Op such tnat all conjuncts 

of Op wnicn directly restrict decision 
elements are in Ope 

Heuristic: To identify Op elements for Opg select 
tnose in wnicn eitner 

1) a single decision element is restricted 
by constant values  OR 

2) a single decision element is restricted 
by an equality 

SOLUTION SPECIFICATION SCHEMA 
SOLUTIONrTSST PATH = b  sucn tnat 
b <=> [FEASIBLE(tlr:PATH) => Ops(TEST_PATH) J 

wnere  SOLUTION ;Y -> B  sucn tnat  Rp = <y> 
and  Ops • subset öf Op such tnat all conjuncts 

not in Ope are in Ops 

FEASIBLE SPECIFICATION SCHEMA 
FSASIBLE:TEST PATH = b  sucn tnat 
b <=> lFEASIBLE(tlr:PATfi) => Opf(TEST_PATE)] 

wnere SOLUTIONS -> B such that  Rp = <I> 
and  Opf • subset of Op sucn tnat all conjuncts 

which relate decision elements and 
not in Ope are in Opf 

FIGURE 4 
Reduction Rule Specification Scnemas 

1 •  ElP. b-lem Rgp.res.ent a tip.n 

Tne required problem representation was developed in 

Figure 1 (see paee 24). 

43 

. 



2.  Problem Sp.e.elf_ica.iip_n 

The components of the formal problem specification 

may  be extracted directly from the problem representation. 

Tne domain of tne problem is tne type of tne variable input 

parameter.  For tne K QUEENS problem tne variable parameter 

is K,  the natural number denoting tne size  of  tne 

cnessboard.  The domain is tnus N, tne natural numbers.  Tne 

ranee of tne problem is tne type of tne solution structure. 

For the K OOEENS problem tne solution is expressed as a 

sequence of lists of natural numbers.  Each list represents 

one solution and tne sequence lists all  solutions.  Tne 

domain and range specification can tnus be specifiea as: 

K_COEENS:N -> <LIST(N^> 

Tne output condition is derived from the  prooiem 

constraint structure.  It  is simply tne conjunction of all 

constraints in tne problem representation, formuiatec in an 

appropriate logical specification. Usin^ X to represent a 

solution and PATH_LIST to represent tne  seauence  of ail 

solutions the output condition is: 

FOR AIL x(i),x(J) IN X, X IN PATH_LIST 
[i*J •> x(i)*x(j) 6. 
1*J *> abs(l-J)#aos(x(i)-x(J))  & 
1 =< x(i) =< KJ 

5. lengtn:X = S. 

The input condition is derived from the observation tnat tne 

program snould produce valil output reeardless of the value 

of tne input, as long as tne input is of tne proper type. 

Tnls  type restriction is already provided  by tne domain 

44 



designation. Trie input condition is tnus vacuously true and 

reduces the truth of trie input/output implication n tne 

truth of the output condition. Tne complete specification 

is given at Figure 5. 

K_QUEENS:K * PATH LIST  sucn that 
true => FOR ALL xfD.xfj) IN  X, 

X IN  PATH LIST 
li*j => x(i)#x(j) 6,~ 
i¥i  Ä> aös(i-j)*abs(x(i)-x(j)/  S 
1 <= x(i) <= 5 J 

$.    lengtn(X) • K 
where  E QUSENS:N -> <LIST(N)> 

FIGURE 5 
C QUEENS Problem Specification 

3«  lJLä£Ii2!l Specification 

We will now apply our reduction rule to tne  formal 

K QUEENS problem specification.  The application of the rule 

will  instantiate  tne specification scnemas for  the  lower 

level functions and produce a oadctraclr scnema with formal 

specifications  for the  lower  level  functions.   Our 

discussion of  tne rule application will  illustrate  tne 

pattern matcning process.  Any  reference  to tne proDlem 

specification within tne function specification scnemas win 

cause a search of tne problem specification for tne lesired 

components.  These components will tnen be inserted into tne 

instantiated function specification.   For example,  tne 

SENSRATE scnema specifies the ran*e of GENERATE  to  be  tne 

range of tne  problem specification.   In instantiating tne 

GENERATE  specification  the  range  in  tne   problem 

45 



specification is extracted and inserted into toe function 

specification. In tnis manner, all lower level function 

specifications are produced. 

For the K QUEENS problem tfie specification is 

listed In Figure 5 and tfte reduction rule scnemas are listed 

in Figure 4. 'rfe begin toe rule application oy developing trie 

specification of GENERATE. Tne scnema lists tne domain as: 

Dg = T where Rp = <I> 

Since tne problem specification lists Rp as <LIST(N)>, T 

matcnes LIST(N) and we nave Dg = LIST(N). Similarly, tne 

matcn for Rg produces <LIST(N)> as tne range for GENERATE. 

The schema input condition is listed as true, wnicn requires 

no matcn since tnere is no reference to tne problem 

specification. The output coniion references the prooiem 

specification only in tne conjunct: 

Cpg(last(x(i)) ) 

where Ope = subset of Op wnicn directly 
restricts decision 

Employing our neuristlc for  identifying  constraints  wnicn 

iirectly restrict decisions, tne constraint: 

FOR AIL x(l)   IN X 
11 =< x(l) =< KJ 

meets tne first case and  Is  inserted into  tr.e  GENERATE 

specification.  All components of tne specification nave now 

been produced and are included in Figure 6. 

Schema instantiation  for the  SOLUTION  function is 

accomplished with tne  same  procedure.  The specification 

4o 



schema lists tne domain of SOLUTION as: 

Ds = Y wnere Rp = Y 

Tne  problem specification  lists Rp as  <LIST(N^>,  wnicn 

allows a matcn  between Y anl  LIST(N).  List(N^  is  tnus 

iientifiel as  the domain.  Tte scnema specification lists B 

as tne range, which  requires no  matcn with  the  problem 

specification.  Tne input condition also renains true, since 

no problem reference is required.  Tne output condition does 

reference the problem specification in: 

Os = Ops(TEST_PATfn <=> b 
wnere Ops = subset of Op not included 

in Ope 

Ve tnus  extract all  conjuncts  of  tne  problem  output 

condition not listed in  tne  output  condition for GENERATE 

and place tnem in tne output condition for SOLUTION.  These 

conjuncts are: 

FOR ALL x(i)fx(j) IN X 
[1*J => x(i)*x(j)  5, 
i*J => abs(i-J )*abs(x(i)-x(jnj 

& lenetn:X = S 

The complete  specification for SOLUTION is listed ir. Figure 

S. 

The procedure for FEASIBLE is tne  same. Tne domain 

and ranee schema specifications are tne same as for SOLUTION 

anl produce a domain of LIST(N)  and a ranee of P. The input 

condition remains true.  The output condition specification 

of: 

47 



Of = Opf(TEST_PATH) <=> b 
wnere Opt' = subset of Op wnicn includes ail 

conjuncts wnicn relate elements 
of decision and are not in Opg 

references Op and forces identification of tnose constraints 

not in GENERATE wnicn address tne decision elements. From 

tne problem specification tnese are easily identified as: 

FOR ALI X(1KX(J) IN X 
[i*J -> x(i)*x(j)  S, 
abs(i-j)*abs(x(i)-x( j))J 

Tne complete specification for FEASIBLE is giver, in Figure 

5. 

*• ZZIELML  Oeneration 

To furtner Illustrate tne program syntnesis process 

we will develop programs to satisfy tne specifications for 

the lower lev°l functions. Tne development proress will not 

be detailed but will be only generally described. 

Development   of  tne  function  GENERATE  will  De 

discussed first.  Satisfaction of  tnis specification can be 

accomplisned by a program wnicn  constructs a  sequence  of 

lists.  Eacn list is  constructed  by  appending one natural 

number to tne input patn.  Tne natural  numbers  wüst  fall 

between one and K. A simple program wnicn accomplishes  tnis 

is: 

GENERATE:FATH = 
AUX_GENERATE:<PATH,   1> 

where 
AÜX   GENERATE:<?ATE,   C0UNTER>  = 

~(ECUAL:<COUNTER,   O  ->  APPENDR:<PATH,   COUNTER>; 
APPENDL:UPPENDR:<rPATE,   C0ÜNTER>, 

A(JX  GENERATE: [PATH,   ADDKX,   COUNTER>J 1 

48 



E  QUEENS:l  = 
BACKTRACKmil 

wnere 
BACKTRACK:PATH   = 

/APPEND 
(<X (lai7bda<TEST  PATH> 

{(SOLUTION:TEST  PATH   ->   ID:TEST   PATH? 
FEASIBLE:TEST~PATE  ->   BACKTRACK :TEST   PATH? 
NIL)}) 

(GENERATE:?ATH)    ) 

GENERATE:P4TH  =  PATH  LIST     sucn   tna t 
FEASIBLErPATH   =>  TOR  ALL     TEST   PATH     IN     ?ATH_LIST 

[lengtn(TEST  PATH)   =  l+len^tnfPATH!     \ 
tir(TEST   PATH)   =   PATH       & 
1   <=  last(TEST_PATH)   <=  K   J 

waere     GENERATE:LIST(N )   ->  <LIST(N)> 

SOLUTION :TEST   PATH  =   D     sucn   that 
b   <*>   {FEASI£LE(tlr:TEST  PATH)   => 

FOR  ALL   x(l),x(iT   IN     TEST_PATH 
li*j   =>  x(l)*x(J)     & 
i*j   =>  aüs(i-j)*aos(x(i)-x( j))J 

5-     lengtn(TEST_PATH)   =  KJ- 

wnere    SOLUTION:LIST(N)  -> B 

FEASIBLE :TEST   PATH   =   t     sucn   taat 
b   <=>   iFEASI£LE(tlr:TEST   PATH)   => 

FOR  ALL  x(l),x(jT   IN     TSSf PATH 
[i#J •> x(i)*x(j)   Si 
i*j = > abs(i-j)/abs(x(i)-x(j))J 

wnere  FSASI£LE:LIST(N) -> B 

FIGURE 6 
E CUEENS Program Specification 

The  next function to be developed  is  FEASIBLE. We 

wisn  to  develop  SOLUTION after  FEASIBLE  »iBC«  SOLUTION 

properly includes all tne constraints in FEASIBLE. This will 

allow  inclusion  of FEASIBLE wltnln SOLUTION.  FEASIBLE  is 

expressed  as  a  conjunction  of    two  constraints.   This 

49 

\ 



translates into tne AND of two computable ocoiean 

expressions. The first expression compares tne values of 

all elements in tne parameter. Tne input condition tens us 

that all elements in tlr:PATH meet tnis condition. 

Therefore we only need compare tne last element with tne 

rest of toe elements. The second expression compares tne 

absolute values of tne difference of tne row positions and 

the difference of the column positions. Since we Know tnat 

tnis condition nolds for all elements of PATH except for tne 

last, we only need test tne last element.  Tnis elves us tne 

program: 

FSASISLE:PATH  • 
AND:[HOW  MATCF:PATH, 

DIAG~MATCR:PATHJ 
wnere 
ROW  MATCH:PATH   = 

(NULL:PATH ->  true» 
AND:[NSOUALS:[LAST:PATH,   l:PATHJ. 

ROW   MATCH(TL:PATH)J) 
DIAG_MATCH:PAT5T * 

~(NULL:PATH ->   true; 
AND:rNEQÜALS[ABS(-:[TL:PATH,   l:PATHJ ), 

iflS(-:lL£NGTH:PATH,   U)J. 
DIAG   *ATC3fTL:PATH)J ) 

is cow 

tnree 

Tne  derivation of  tne  function  SOLUTION 

simple.  SOLUTION  contains  tne  conjunction  of 

constraints.  Two of tnese are includes, in FEASIBLE. We can 

include FEASIBLE and tne final constraint in an AND function 

to complete tnis program.  Tnis elves us: 

SOLUTION:PATH = 
AND:[FEASlBLE:PATH, 

EQUALS:[£, LENGTH :PATHJ] 

lifter derivation  of  tnese  programs  tn*  syntnesls system 

50 

- 



would replace tue specifications of Figure 6 vitn tnese 

programs and tne process would De complete. 

D.  Til PROCESSOR SEQUENCING PROBLEM 

Tne Processor Sequencing Proölem is a Known NP complete 

problem (Ref. 20). It differs from tne g QUEENS prooiem in 

tnat tf.e patn elements under examination at any sta,ee of tne 

process nave a number of associated properties ar.d tne 

constraint relationships are expressed predominantly in 

terms of tnese properties. Tne solution to tr.is problem 

will illustrate tae use of global data la bacKtracKin* 

algoritnms and tne incorporation of constraints into tne 

function GENERATE. 

1 •  Pl2.5i.2U! R§EI§L§.2.fiiiIi2U 

Tne Processor Sequencing ProDiem (PSP) may be simply 

stated: Given a set of tasics to oe run on a sinele 

processor, witn eacn tasK aaving an associates release time, 

processing time and deadline, does tnere exist a scneauiing 

sequence wnicn will complete ail tasics prior to tneir 

deadline? Tne associated properties place a series cf 

constraints on tne tasss. Tne release time is an earliest 

possible availability constraint. No tasic is available to 

run before Its release time. Once selected for execution, 

eacn tasK will consume exactly tne amount or time spe^lfiea 

by its processing tine. Tne deadline places a latest 

completion constraint on eacn tasK. 

51 



Tne first tasit In representing this problem is to 

lecile on a decision structure. One obvious component- of a 

decision is whicn tasi to run next. 3ut tnis is not 

complete in tnat more information is required about 

scheduling tnis tast tnan mere selection provides. Tne time 

the tasx is scheduled to run is also a crucial part of the 

decision. This time is not fixed based on tne previous 

decisions in the partial solution vector, out depends on 

additional information. For this reason, the decisions made 

for this problem can be represented by a pair, the first 

element Being the tasic selected and tne second element bein* 

tne start time of tne tasic. 

Tne second representation tasit is to  transform tne 

decision structure into a  solution structure.  Tne solution 

structure  will  consist of a sequence  of  lecisions,  eacn 

decision  being  of  tne  form  specified  by  trie  decision 

structure.  Taus a solution will nave the form: 

X = ( x(l ), x(2) r(fO ) 

wnere eacn x(i)   is of form 
( tasit(l), timed) ) 

The final representation tasK  concerns tne  problem 

constraints.  I number of constraints relate tne elements of 

tne possible solutions.  Tne first we will consider  is  tne 

deadline restriction Imposed on  each taste.  Vnetner a tasic 

meets its deadline depends on two factors:  tne  tasK  start 

time and  tne tasic processing time.  Tne start time  is  an 

element of tne  decision  being tested.  Tne processing time 

52 



anl deadline tine are constant values associated wit* eacn 

instance of tne problem.  A  tasir meets its deadline -if tne 

sum of  the  start time and the processing time is less tnan 

tne deadline.  Tnis can be expressed in computable form as: 

FOR   ALL x(i)   IN  X 
[deadiine(tasK(l))   >= start(i)   •  time( tasif i ) )J 

where deadline,   time  are  problem  constants 

Another    solution    element  constraint   is  identified     by    tne 

fact   tnat  no   tasJc may   be   scheduled   twice.     Thus  eacn  tasK  in 

tne  sequence must   be  distinct,     tfe     can     represent     tnis     by 

noting  tnat   if  the  position   of  two   tasKs   in   tne   sequence  are 

distinct,   tnen  tne tasics  must  also   be  distinct.    Tnis  can  be 

expressed as: 

FOR   ALL  x(i),x(j)   IN   X 
[  i*J  =>  tasitd )*tasit( j)  J 

Tnere are also  constraints  on    tne    start   time  of ea^n tasic. 

These    limit     tne    start     time  to  a     point    after     botn     tne 

completion   time of   tne  previous   tasK ard   tne   release   time   of 

tne  tasK under consideration.     It     follows     that     tne    start 

time     may     be    expressed     as     tne       -naxlmum       of       tne       two 

constraints.       Assuming    a   laneuaee  function   to     select     tne 

maximum    of     two     natural     numbers,   tnis  constraint     ray     oe 

expressed  as: 

FOR   ALL   x(l)   IN   X 
Istartf i )=max ( release (t as teil)), 

start( i-1 )+process( tasic( i-lM   NJ 

where  release,   process  are   problem constants 

Tne   final  constraint     identifies     a     solution  from  potential 



solutions wnicn meet ail otner constraints. If ail otner 

constraints are met and tne numDer of elements of tue 

proposed solution equals tne number of tasss. tnen we «enow 

tnat all tasics are included in tne sequence. Tr.is final 

constraint can be identified as our solution constraint and 

is expressed as: 

LENGTH:X = K 

Tne complete proDlem representation is given in Figure 7. 

DECISION STRUCTURE 
dec<cision(i) = itn tasK to run 

start time of tasir 

SOLUTION STRUCTURE 
<X> wnere eacn X = (x(l), x(2) x(K)) 

wnere x(i) = (tasic(i), start(i)) 

CONSTRAINT STRUCTURE 
element constraints 

FOR ALL x(i),x(j) IN X 
t i#J -> tasic(i)*tasic( j)J 

FOR ALL x(l) IN X 
[ neadiine( tasic(i)) >= 

FOR ALL x(i) INSTt(l) + *"^^i»   J 
L start(l) = max(release(tasitf i )), 

start(i-l)+process( tasx(i-iM) J solution constraint 
lenetn(X} = K 

wnere release, process, deadline are prooiem constants 

FI SURE 7 
PSP Problem Representation 

2'    IZläL^IL  Speclfl£aiio.n 

As witn tne K QUEENS problem, tne four components of 

tne PSP formal  problem specification can be easüy derived 

from tne problem representation.  Tne domain for  tne PSP 

54 



problem is the type of the variable input. In tnis case, 

the variable input is the nunber of tasits, X, a B*tur*i 

number. Tne solution structure should provide us tne 

range. In this case, a single solution is structurea as a 

list of pairs of natural numbers. The first eienent of tne 

pair is a tast identifier and the second element is a start 

time for that tasK. Since tne problem requires a sequence 

of all solutions, the proper ransre is a sequence of lists. 

We can express this as: 

PSP.-N -> <LIST(NxN)> 

The problem output condition is immediately derived 

from tne constraint structure. It is merely the conjunction 

of all constraints we nave identified. Tne expression of 

tnis output condition is more complex tnan for the £ QUEENS 

problem because tne constraints rely on constant values 

defined ty tne problem instance. Our notation for declaring 

tnese constant values will be tne wnere declaration of cur 

proerammin* language. Tnis declaration in effect defines a 

scope of visibility for tne constants, naicing tnem Known to 

the constraints.  The problem output condition is: 

FOR  ALL x(i),x(j)   IN   I 
Li*J  =>  tasK(l)*tasic(j)    * 
deadiine(tasic(l))  >= 

startd ) + process( tastd ))    & 
start(1)=max(release(tas*(i)), 

start(i-l)*process(tasK(i-i))   )J 
\  lenetn:X*K 

where release, process, deadline are program constants 

For reasons tne same as witn tne K QUEENS problem tne input 

t 

5b 



condition is vacuously true.  Tne complete specification is 

given in Figure 6. 

PSP:K = TASK LIST  sucn tnat 
true  => FOR~ALL x(i),x(j) IN I, X IN TASK_LIST, 

and x(i) = (tasx(i ),startTiU 
[i*J => tasfc(i)#tasi(J)  & 
deadline(tass(i) >= 

start(i)+process(tasJt(l))  «i 
start(i) = max ( release (tasic(i)), 

start(1-1}+process(tasK(i-l))) 
& iengtn(X) = K 

wnere PSP:N -> <LIST(NxN)> 
and release, process, deadline are problem inputs 

FIGURE 8 
PSP Problem Secification 

3«  ÜÜ52Ü2S Specification 

tfe no«  apply our reduction  rule to  produce a 

bacJctracs proeram witn formal specifications for tne  lower 

level functions wnich will sclve tne PSP proolem.  To io so 

we use  tee  scnemas of    Figure 4- ani tne formal  prcciem 

specification of Figure  S.  Ve oesin with tne specification 

of tne function GENERATE. Tne specification schema lists tne 

lomain as 7,  wnere D.p = <T>.  *atcnin?  tnis aeainst tne 

problem specification provides Rp as <LIST(NxN)> wnicn ^ives 

Y as  LIST(NxN).  Tnis  is placed as tne domain of GENERATS. 

Tne scnema lists tne range as Rp so we nave: 

GENERATErLlST(NxN) -> <LIST(NxN)> 

The schema input condition does  not  reference tne problem 

specification   so   it   is  copied  into   the  GENERATE 

specification.  In a liie manner tne first two conjuncts  of 

56 

- 



tne scnema output condition are copiea into  the GENERATE 

specification.   Tne final  conjunct  references  Ope-,  tne 

subset  of  tne problem output  conditions wfticn  directly 

restricts  a decision element.   Examining  tne  problem 

specification under tne guidance of our neurlstic procuces a 

match with the conjunct: 

FOR ALL x(i) IN X, X IN TASK LIST 
and x{i)  = (tasi(l), start(l)) 

[srart(i) « max(release(tasfcd ), 
start(i-1)+process(tasnfi-1^)) ] 

and case two of tne rule.  Case two prescribes tne inclusion 

of problem constraints wnicn in the GENERATE function  if a 

constraint  restricts a  single  decision element  cy an 

equality.  In this case start(i) is tne decision element and 

it is restricted by an equality.  Case one produces no mat~n 

since no constraint bounds a  decision element oy constant 

values. Tne  scnema entry for Opg is  replaced  oy tne 

conjunct above producing tne full specification of Fieure 9. 

Tne  same procedure is used to develop tne  formal 

specification for SOLUTION. Tne  scnema specifies tne domain 

as f wnere tne problem range is <T>.  Tne  problem  range is 

<LlST(NxN)>, wnicn produces a y matcn of LIST(NxN), wnicn we 

ta*e as  tne domain  of SOLUTION. Tne scnema range aoes not 

reference the problem specification,  so  it  is copiea into 

the  function specification.  Tne  same  is done for  tne 

function input  condition.  Tne  scnema output condition 

references Ops, tne subset  of the problem output condition 

rftiicn  is  not included in Opg. From tne discussion  in  tne 

57 

- 



last paragrapn this reduces to tne first, second and fourth 

conjuncts in tne problem output condition. Replaci-ne Ops 

with tnese conjuncts produces tne specification of Figure y. 

Tne specification for SOLUTION is identical to 

FEASIBLE, as snown in tne scaemas, with tne exception of tne 

output condition. In tnls case, tne reference to Opf in tne 

scnena must be replaced by all conjuncts of tne problem 

output condition wnicn relate decision elements and are not 

in Ope. Wlta tnls problem tne last conjunct does not relate 

decision elements since it addresses tne solution as a 

whole. Tne tnird construct is included in Ope. Tnls leaves 

tne first two constraints to be substituted for Opf. Placing 

tnese constraints Into tne scnema produces tne cpecification 

of Figure 3. 

E.  SCHEMA LIMITATIONS 

The reduction rule developed in tnis chapter nas a 

number of limitations. Tne principal deficiency is that it 

is neuristlc in nature and not an algorithm. The underlying 

reason for tnis is tne failure of tne rule to incorporate 

any proof mecnanism In its actions. It is oeiieven that a 

proof mecnanism may ee constructed based on tne design 

method developed above. Reduction rules for the simple 

divide and conquer control strategy nave teen developed by 

Smitn [Ref. 2iJ wnlcn employ a proven theorem as tne oasis 

for specification development. 

56 



PSP:X * 
BACKTRACK:nil 

wnere 
BACKTRACK.-PATH  = 

/APPEND 
(* dambda<T£ST  PATH> 

l(SOLUTIÜN:TEST  PATH  ->  ID:TEST  PATH; 
FEASIBLE:TEST~PATH   ->   BACKTRACK .'TEST  PATH; 
NIL)}) 

(GENER&T£:PATH)    ) 

G£NERATE:PATH  =  PATH  LIST     such   that 
FSASIBLErPATH  =>  FOR  ALL  x(i),x(j)   IN   X, 

X     IN     PATH LIST 
and   x(i)  =   ("tasxd).startfi)) 

[ienetn(X)  = l+lengtn(PATR)    & 
tlr(X)   = PATH      & 
start(l)  = iraT(rslease( tasKd )), 

startd-1 )+process( tasicd-lU )] 

where    GENERATE:LIST(NxN)   -> <LIST(NxN)> 

SOLUTION:TEST PATH =   b     sucn  tnat 
D  <=>   {FEASlBL£(tlr:T£ST  PATH)   => 

FOR  ALL  x(i)7x(l)   IN     TEST  PATH 
wnere  x(l)  =   (tassTi).  stand)) 

[i#J   •>  tasir(i)*tasic( j)     S, 
deaailne( tasic(l))  > = 

startd)*proce$s(tastd)J 
5,     lennn(TEST_P.*TH)   =  KJ 

where  SOLUTION:LIST(NxN)   ->  I 

FEASIBLE:TEST  PATH   =   6     sucn   tnat 
b  <=>   (FEASIBLE*tlr:TSST  PATH  => 

FOR  ALL   x(i)7x(j)   IN     TEST_?ATH 
wnere  x(i)  =   (tlsc(i)i  stands 

[l#J  =>   tasK(i)nas!t(j)     & 
deadline(tasK(i))  >= 

stand)+process(tasic(l )Ul 

wnere  FEASIBLE:LIST(NxN)  -> B 
wnere  release,   deadline,  process  are  program  constants 

FIGURE  9 
PSP  Program Specification 

59 



A second limitation of tne rule is tne iref f ici°r.cy 

lnfierent in tne bacstracs scnema. As eviaencei oy our 

examples tnere is mucn duplicate computation cetweer. tne 

SOLUTION ana FEASIBLE predicates. Tnis could indicate tr.at 

efficiency is better served by evaluating tne FEASIBLE 

predicate first and men nestln? a aiminisned for* of tne 

SOLUTION predicate witnin tne action clause of FEASI£LE. 

Altnougn our lesion metnod would allow tnis. it restricts 

tne scnema to proolems wnere tne FEASIBLE constraint 

includes only restrictions witnin SOLUTION as well. It is 

not Known wnetner tnis is a general condition witn problems 

suitable for tne bacKtract solution tecnnique ana tne i-cre 

eenerai scnema of Figure 3 was developed instead. 

A eenerai efficiency concern in tne development of any 

bacitracfc aleoritnm is tse proper subdivision of constraints 

between GENERATE and tne otner functions. Obviously, any 

constraint witnin GENERATE filters nonfeasicie partial 

solutions from SOLUTION and FEASIELE. How mucn total 

computation is saved is not clear, nowever. Tne total 

number of nodes examined oy tne predicates is less wnen more 

of tne constraints are included witnin GENERATE, out tne 

computation required by GENERATE is greater. A general 

conclusion tnat seems valid is tnat some wor^ is saved if 

tnere is also duplicate computation, as aiscussea above. 

Between SOLUTION and FEASIBLE, out if tnere is no duplicate 

computation, tnen eacn extension  at eacn  level visited is 

50 



tested once against eacn constraint. A more favoraoie area 

for related investigation is in program transformation. 

Tnis worst -nay identify wnen bacKtrac« programs produce 

duplicate computation, ana transform sucn prcsrams to 

eliminate the duplication. 

öl 

- 



7« La  INTENSION TO BACKTRACE 

Tne bacjrtracic aleoritnm nas traditionally been employed 

to solve problems of tne type described in Cnapter III. 

Research on tne strateey nas been oriented towards 

efficiency improving tecnniques, [Ref. 22, 23j program 

proving TRef. 24J , problem representation formalisms [Ref. 

25J and control structure abstraction [Ref. 26, 27J. Tne 

problem of extending tne strategy for solution of a 

different class of problems nas not been significantly 

addressed. Tne second reduction rule proposed by tnls paper 

extends tne fcacstracK strateey by adapting it for solution 

of tne problem reduction problem type. Tne result is a 

general purpose scnema witn a neuristic lesion metnod for 

lower level function specification. As tnis result is less 

rooted in existing Knowledge, tne design metnod presented 

will be described in general terms. 

A.  PROBLEM REDUCTION PROBLEM REPRESENTATION 

A problem reduction problem representation is anotr.er 

formalism for symbolic problem description. As witn tne 

state space representation discussed in Cnapter III, 

representation of a prooiem witn a problem reduction format 

will impose a particular *rapnic structure onto tne 

problem, rfltn tnis structure we can erploy a ^rapn searcn 

procedure to searca  fcr a  solution.   Tue goal  in  tnis 

02 



caapter is to adapt trie bacKtracK  strateey to searra the 

problem reduction grapn.  In  tnis  paragraph we win- first 

develop the representation, tnen depict tne grapn structure 

produced by tne representation, and tnen illustrate a sample 

problem representation. 

*•  ElP-^ir-ül Espresentation 

TRere are  three  Key components  of  a  problem 

reduction  representation.  Tne  first  component  is  tne 

problem state.  Tnis is a symbolic description of tne  state 

of the problem at any point  in  the  searcn process.  Tne 

initial problem state is a description of a coal which is to 

be satisfied,  äS  tae search process executes, the initial 

goal state will be decomposed  into  one  or more  suce'oai 

states,  wnicn,  wnen ootn are satisfied, will  cause  the 

original goal  to  be  satisfied.  An example of tr.is is tne 

symbolic integration process.  Given a pvai     state  of  tae 

form: 

/(f(x) * g(x)) dX 
where f,? are icncwn functions 

A solution to tnis problem is a symbolic  representation  of 

tne integral.   An initial decomposition may produce tne two 

subgoais: 

/f(x) ix 
/g(x) dx 
where f,g are mown functions 

Solvin* both of these two suo*oais wül leid to tne solution 

of the original problem. In tnis case, the two subsolutlons 

must be added. 

(53 

- 



In order to decompose states and compose solutions 

some means must be provided for tnese actions.  T*e  second 

component of a problem reduction representation is a set  of 

reduction rules.  £acn rule will act on a goal description 

and provide one or more decomposed subgoals.  Tne rule also 

provides a metnod for combining solutions to subgoals into 

solutions to tne original goal.  Tne most significant aspect 

of rule application is tnat all sucgoais must  te solved for 

tne original goal to be solved.  In our symbolic integration 

example tne reduction rule applied may be of tne fern: 

If Integrand is form f(t) • g(x) 
wcere x is variable of integration 

tnen 
solve f(x) "ana g(x) 
compose solutions witn • 

It is important to note  tnat  tnere is  an applicability 

condition (If) ana a conjunctive solution. 

Tne representation we nave descricen tnus far allows 

only goal  decomposition.  Tne   tnird component  of  tne 

representation allows for a solution of a subset of goals we 

will call pri-nitive.  Tnis component is a set of rules, also 

called primitive, wnlcn, wnen applied  to  a primitive goal 

will  return a  solution.   In  our  symbolic  integration 

example, one primitive rule may oe: 

If Integrand is of form cos x 
wnere x is variable of integration 

tnen return sin x 

Tne primitive operators provide tne only means of fincing a 

solution in  a problem reduction representation.  Tney are a 

b* 

- 



means to represent tnose goals wnicn we Know now to directly 

solve. 

2>  4SlZ2l Treg Rgp.r.es.g.niaii.o.n 

Tne grapn structure imposed by tnis representation 

is similar to the structure of a state space tree, out 

contains an additional node type. tfe will represent poal 

descriptions Dy noaes and rule applications By arcs. Tne 

patn from tne root ot' a tree to a subgoal description 

describes tne sequence of rule applications wnicn produced 

tne ffoal description. Siven a node (goal description; tnere 

is a ranee of reduction rules wnicn may be applied. Tnis 

range is represented by tne set of arcs leavine tne node. 

Tne complicating factor of tne problem reduction 

representation lies in reduction rules wnicn decompose a 

goal description into two or more suogcals. Tne 

reiationsnip between tnese subgoals is tigntly constrained, 

representing tne fact tnat bctn of tnese subgoals must be 

solved to solve tne eoai. Tnis logical AND reiationsnip 

contrasts witn tne subgoals produced cy tne otner reduction 

rules. Satisfaction of tne subgoals produced by any 

reduction Ml" will satisfy tne goal. Tne erapnic solution 

is to tie toeetfter tne arcs representing application of one 

rule with a nyperarc. Tnis creates an AND node, wnicn 

signifies tnat all descendants of tne AND node must be 

satisfied. Tne application of distinct rules are 

represented oy OR nodes, or arcs not connected cv nyperarcs. 

65 



wnlcn represent tne logical OR nature of tneir 

relationship. Figure 10 depicts a sample searcn space. 

Given an initial goal represented as DOde A, tnree reduction 

rules can be applied. Rule 1 produces subgoais B and C, 

rule 2 produces subeoal D and rule 3 produces subgoais S and 

F. A can DP solved by solving eltner set of goals, b and C, 

or D, or S and F. Ultimately, If B and C are to be solved 

tnen G or H, and I must be solved. If E is to te solved, 

tnen J and K must be solved. If E and F are to ce solved, 

taen I and M and N must be solved. To solve tnis problem 

tae searcn process must searcn for subeoais wnicn can be 

solved by primitive operators and tie to*etner tne separate 

patas represented by and nodes. Unilite tne state space 

searcn, tne result of tnis searcft process »111 De a solution 

tree. Fro-n any node tne separate brancnes represent tne 

different subgoais produced oy a single rule application. 

As an example. Figure 11 depicts tne four solution trees 

present in Figure 1<? if all leaf nodes can ce solved. 

3.  An Example Re2res.entat.l0n 

Tne example we present nere and cevelop for tne 

remainder of tne cnapter is a simple aritnmetic tneorem 

prover. Given a eoal statement in terns of an aritnmetic 

assertion in any number of variables, and a number of 

propositions about tnose variables we Know to be true, can 

we prove tne statement is true. In tnis paragraph we will 

develop a problem reduction representation for tr.e problem. 

ob 



and in later paragraphs we will adapt toe bacKtrarit control 

strategy to searca tue representation defined I.ND/08 tree 

and return a proof of tne assertion. 

FIGURI 10 
AND/OR Grapn 

FIUBRS 11 
Solution Grapns 

To represent our prooiem wits a problem reduction 

formalism we need to define tne tnree components of tne 

representation. Tne first component is tne roal 

description.  Tne initial goal is an aritnmetic  assertion. 

b? 



A suitable goal description  Is  tue assertion itself.  The 

result of applying a reduction rule will  De  one  or. more 

suojfoals,  eacn of vnicn  should De a  simpler aritnmetic 

assertion.  For our prooiem representation we can express 

tnis as: 

GOAL DESCRIPTION 
form: aritnmetic assertion 
initial: [B * (A + C)J/E > E 

The  initial  *oal  description  represents  tne  particular 

prooiem instance to solve. 

Tne next  component we  descriDe  is  tr.e  set  of 

primitive rules.  Tnese rules  need  to  De described before 

tne reduction rules  Decause tnev provide tne basis towards 

which   the  reduction  rules  snould  simplify  tne   goal. 

Primitive rules represent tne Knowledge possessed about tne 

problem.  They specifically apply  to ?oai descriptions tnat 

can be directly solved.  In tne theorem prover, tnese  rules 

are expressions of tne propositions wnicn are  Known  to  ce 

true.  For the problem instance we are concerned witn  tnese 

ire: 

PRIMITIVE RCTLES 
A > d 
B > 0 
C > <d 
E > <d 
C > 5 

To complete our problem representation we need only 

specify tne reduction rules.  Tne  purpose  of  a  reduction 

rule is  to  simplify a *oal state wnici cannot ce directly 

solved by a primitive rule.  It follows tnat reduction rules 

be 

. 



embody general knowledge about prooiem area relationships 

wnicn allow transformation of goal descriptions into one or 

more simpler descriptions. In simple tneorem proving tnese 

relationsnips can be described witn logical implications 

wnicn represent general Known theorems. Tney can be stated 

in the form: 

PI 5. P2 4 ... & PK => P0 

wnere PfeJ represents  a ?oal and PI,  ...  ,PK  represent 

subgoals.  If P0 can be matcned against a goal  description, 

tnen subgoai  ?l  ... PS will be produced.  We will use four 

reduction operators for tne tneorem prover: 

REDUCTION OPERATORS 
x>0 & y>0 => x*y > 0 
x>0 6. y>z => x+y > z 
x>0 S, y>z => x*y > x*z 
x>z*y s. y>0 ->  x/y > z 

Tne complete problem representation is given in Figure 12. 

&0AL DESCRIPTION 
form: aritnmetic expression 
initial: [3 * (A •• C)J / E > 3 

PRIMITIVE RULES 
A > 0 B > 0 
C > 0 E > 0 
C > E 

REDUCTION RULES 
x>0 S, y>0 => x*y > 0 
x>0 & y>z => x+y > z 
x>0 £ y>2 => x*y > x*z 
i > z*y & y>0 => x/y > z 

FIGURE 12 
Tneorem Prover Problem Representation 

5y 



?0 

B.  SCHEMA DEVELOPMENT 

In developing the bacntracK schema for a proeiem 

reduction representation the procedure described in Cnapter 

If will again be followed. Tnis procedure requires 

description of tne expected input, description of tne 

desired output, identification of tne operations required to 

transform tne input to the output and tnen translation of 

the operations into lower level functions and appropriate 

functional forms. 

1« Ia.e Expeciei Input 

A.S in the state space bacKtracit schema a 

representation of a path is expected as inuut. Tnis patr. is 

a symbolic description of tne sequence of rule applications 

wQlcn nave reduced tne initial goal descriptlcr to tne 

current p-oal description. Since tne patn does not include 

the current ?oai description, tnis must also oe includes in 

tne expected input. The resulting input is a seuuence 

consistine of a patn and a symbolic representation of tne 

current goal. 

Tne relevant characteristics of tne input are two. 

The first is tnat an rules In tne path nave seen 

successfully applied. Tne second is tnat tnis current goal 

may be primitive. Tnis situation is a result of tne 

bacictracK strategy applying tne SOLUTION predicate before 

the FEASIBLE predicate. Tnis will be furtner clscussec in 

the section on Input transformations. 



2«  5§slr»4 Outp.y.t 

The output lesirei from a problem recüction 

representation is often dependent on tne problem. For 

example, tne desired output for tue symbolic integration 

problem is a symbolic description of tne integral. With tne 

simple tneorem prover we desire proof of tne input 

assertion. A commonality between tnese and all problem 

reduction representations is tne sequence of operations 

performed to arrive at a solution. For tnis reason tne 

general output desired will be a solution grapn consisting 

of tne reduction rules and primitive rules applied to solve 

tne problem. The return from tnis most general case can be 

transformed into tne desired output form. 

3 •  ISEÜI Tra.ns.lP_rma.ii ons 

In describing tne input transformations required we 

will stay as close as possible to tne simple ba^irtrari 

scnema developed in Chapter IV. Tne goal is to procure a 

scnena wnlcn can be applied to either tne state space 

representation or tne problem reduction representation. Tne 

iesisrn method will differ based on tne problem 

representation. To do so we will identify tnose aspects of 

the simple bacKtracfc schema which require enhancement to 

search an fcND/OR grapn, and develop tnose ennancements in 

eitner tne scnema or tne design metnod. 

Tne initial transformation required is to extend tne 

patn parameter.  In tnis case,  tne extension consists  of 

71 

- 



appealin« one more reduction rule to tne patn of rules 

previously applied. Tnis extension does not apply tne'ruie. 

but lists it as one possible alternative. Tfle result of 

trxis transformation will oe a new sequence of patn. state 

pairs. Eac* pair represents a different alternative 

extension to tne patn of applied rules. 

Tee second transformation is tne  conditional  test. 

Tne SOLUTION predicate win again be executed first.   Ir.  a 

problem reduction representation  a  solution  is  not 

rscogniiid by examining  tne sequence of derisions (nil 

applications),   but  oy  examining  tne  current  soal 

description.  Upon  recognition of a solution, tne artion is 

to  return tne sequence  of rules,  and not  tne  *oal 

description.   If  tne SOLUTION predicate  fails  tft-a tne 

FEASIBLE predicate win De execute*.  Tnis  predicate is a 

test of tne patn to determine if a solution can feasibly o- 

discovered tnrouen expansion of tne patn.  Tne clearest way 

to test tnis in a problem  reduction  representation  is  to 

test  tne  reduction  rule  appended by tne  patn  expansion 

transformation.  If tnis rule can be applied  to  tne  goal, 

tnen further subeoais can be produced »alea nay  lead  to 

solutions.  If tne rule can be applied tnen tne appropriate 

actions are more complex  töan tnose  in  tne state  space 

scnema.  Tae obvious first action  is  to apply tne rule and 

produce new subgoais.  If only one suogoai  is  produced  we 

nave cr-ated an OP node.   ia  tnis  case  tne appropriate 

72 

. 



action is to recursively call tne bacictraciE function wlta 

tne new subeoal and patn. If more tnan one suogoal is 

produced an AND node nas been created and more complex 

action is required. If an AND node is created tnen a 

separate path is created for eacn descendant of tne ncae. 

To solve tne AND node eacn patn must return a solution. To 

solve tnis problem by a bacstracK searcn we must searcn eacn 

patn and compose tne solutions. If any patn returns nil, 

tne result of tne node will be nil. Tne order of 

transformations on AND node is tnus to apply tne rule, 

create separate <PATH, S0AL> pairs for eacn subgoal, 

bacjctracic on eacn pair and finally compose solutions. 

Tne  final  transformation  is  to  filter  tne  nil 

solutions returned by    tne examinations  of tne expansions. 

Tne value returned will consist of a list of solutions. 

*•  Schema Translation 

To derive a scnema from tne required transformations 

we will again sroup tne transformations into lower level 

functions combined witn the appropriate functional for^s. 

The first transformation is tne generation of expanioi 

paths. Tnis transformation can acaln oe accorrpiisned ey a 

single function GENERATE. Ig 0"r language notation tnis ls: 

GENERATE:<PATH, G0AL> 

wnere tne parameter PATH is a representation of {*• sequence 

of rules applied, and tne parameter GOAL is a description or 

tne current coal. 

73 

\ 



Tne second transformation Is tne conditional testing 

function. As witn tne state space representation, tnis 

function is applied to one element of tne output or &ENEPATE 

and the results are returned before it is applied to tne 

next eleTent.  Tnis APPLI-TO-ALL operation is: 

«.TEST (GENERATE:<PATH, G0AL>) 

Ms  can expand  tne function TEST since *e «now tne actions 

required of it.  The first  predicate  tests  tne goal  for 

being primitive.  If it is, the action is  to  return  tne 

patn.  Tnis can be expressed as: 

SOLUTION:G0AL -> ID:PATB; 

The  second  predicate  is  a  test  for feasibility of 

expansion.  Tne corresponding action  is to apply the rule, 

decompose  the patn,  subgoals  pair into separate  path, 

subgoal  pairs,  apply bacictracic to eacn  pair ani  finally 

compose tne results.  This can be expressed as: 

FEASIBLE:<PATH, GOAL> -> 
COMPOSE( BACKTRACK(DECOMPOSE:<PATH, GOAL>))5 

Dsir.g tne lambda definition of our language we now nave: 

(lambda <PATH> 
{(S0LOTION:S0AL -> IOtP&TE) 

FEASIBLE: <PATH, GOAL> -> 
COMPOS£( BACKTRACE DECÜMPOSE:<PATR, SOAL>)); 

NIL)}) 
(GENERATE:<"PATH, GOAL> ) 

The final  transformation  filters  tne nil  values 

returned by the process.  This can be expressed as inserting 

tne APPEND function through tne list of solutions returned. 

The complete schema is given in Figure 13. 

74 

i 



BACKTRACK:<PATH,   GOAL>   = 
/APPEND 
( A(lambda<PATH> 

t(SOLUTION:GOAL -> ID:PATH; 
FEASIBLE:<PATH,GOAL> -> 

COMPOSE*   £AC£TP.ACK(DECOMPOSE:<PATH,SOAL> ) U 
NIL)}) 

(GENERATE:<PATH,GOAL>)   ) 

FIGURE  13 
uacKtracK  Proeram Scnerra 

C.  SUBSCHEMA SPECIFICATION 

Tne scne-na developed above provides a structurp for 

composing tne solutions to tne subprobiems GENERATE, 

SOLUTION, FEASIBLE, DECOMPOSE and COMPOSE. A desifc-n netnod 

for specifyin* tnese subprobiems is also required. Tnis 

parasrapn discusses tne relationsnips between tfte functions 

tne scftema requires to solve a problem. A detailed design 

metnoi similar to tne metaod presented in Cnapter 17 is r.ct 

developed,   but  left for furtner  research. 

1.     GENERATE  Specification 

Tfie function GENERATE -nust accept an input pair 

wnicn represents tne patn of reduction rules applied and tne 

current goal specification. Tte output must be a sequence 

of pairs. Eacn pair contains a new patn representation and 

tne goal  specification.    Tue   new    patn    is  tne  input   patr  to 

wnicn one reduction rule of tnose available to apply nas 

been appended. Tne seauence contains a separate pair for 

2acn  available  rule.     As  an  example,   if    GENERATE     is     given 

?b 

- 



tne input: 

<(R1, R3, R2), GOAL> 

anl  tnere are four reduction rules  R1...R4 available  to 

apply tnen GENERATE must output: 

«(Rl, R3, R2, Rl), G0AL>, 
<(R1, R3. R2, 82), GOAL>, 
<(R1, R3, R2, S3), G0*L>, 
<(R1, R3, 32, R4), GOAL» 

Tnis output represents ail possible expansions of tne rule 

application patn.  It does not represent an expansions witn 

applicable rules.  A different  function of tne senega will 

delete nonapplicaDle rules. 

2.  SOLUTION Specification 

The function SOLUTION will again be tne  easiest  to 

describe.  Tne intent  of SOLUTION  is  to  test  a *?oai 

description to see if it is a  solution.   In  tne  prooiem 

reduction representation  tsere is one operation to test for 

a solution.  If tne goal description can  be solved  by a 

primitive  rule  tnen a solution  nas  been found.  Tne 

specification of SOLUTION must  express  tnis  relationship 

between tne *oai and tne  primitive rules.  Tne for^ of tne 

relationsnip may differ from problem  to  problem.  For 

example,   in  tne  symbolic  integration  problem  tne 

relationsnip is an application.  If a primitive rvie can  be 

applied to tne eoal, tnen it can  be solved.  In tne tneorem 

proving problem tne relationsnip is membersnip.  If tne ?oal 

is a member of  tne primitive rule; tnen tne ^oai is solve«. 

75 



3«  FEASIBLE Sj2ec.iflcasi.0n 

The function of tne predicate FEASIüLE is to test a 

path for tne possibility it may leal to a solution. Tne 

patn under consideration exnioits two cnararteristics. Tne 

last element of tne patn is a reiuction rule wnicn r.as not 

been applied to tne goal description. Tne remainder of tne 

patn is a sequence of reduction rules wftlcn save ceen 

applied to tne initial goal description to produce tne 

current description. If tne Datn under consideration is to 

be considered feasible, tnen tne last rule of tne patn must 

be applicable to tne goal description. In more concrete 

terms, a reduction rule applies to a <?oai if tne rule 

produces one or more suogoais from tne goal. Tne FEASIBLE 

predicate must test tnis reiationsnip between tne coal and 

tne reduction rule. It is significant mat tne FSASIiLE 

function does not actually apply tH.e rule to produce 

subeoais.  It need only ensure tne rule :an oe applied. 

4.  DECOMPOSE Sßecificaiion 

If tne patn is feasible (tne rule can be applied), 

tne next step is to produce a <PATH, GOAL> pair. Tnis pair 

will be tne input to tne recursive call to BACKTRACK. In 

many instances tne application of a reduction rule will 

produce more tnan one subgoal. For tnis reason tne function 

DECOMPOSE must do more tnan apply tne rule to prepare input 

for BACKTRACE. For every subgoal produced py tr.e rule 

application,  DECOMPOSE must construct a ^PATH, CiCAL>  pair. 

77 



Tue patn in all pairs is identical: tne sequence of rule 

applications vnicn produced tne associated - *?oai 

description. Tfte sroal description in eacn pair is unioue: 

it descrioes one of tfte suDeoais produced Dy tr.e rule 

application. Tnere are tiro important characteristics of tne 

output of tnis function. If tne rule application produces 

only one sutigoal, men tnere is only one <PATH. GOAl> pair 

produced, and tne APPLT-TO-ALL functional form or tne senega 

reduces to a stralgnt application or BACKTRACK to tne pair. 

Tnis operation is similar to tne state space oacictracic 

scnema. Secondly, DECOMPOSE das transformed a <PAfB, GOAL> 

pair wnere tne patn description contains a nonapplied rule 

(tne final rule) to a pair witn ail rules appiiea and a new 

eoal description. Tnis is tne type of input expected oy tne 

function BACKTRACK. 

b.  COMPOSE S2eciflcation 

BACKTRACK is applied to eacn <PATH, GCAL> pair 

produced By DECOMPOSE. Tne result returned ey tne 

application is a sequence of patns. Eacn patn represents a 

sequence of rules applied to tne goal description «men 

terminated in a solution. For <?oal descriptions vricn could 

rot oe reduced to a primitive <roal tne algorithm returns tne 

nil patn. If tne nil patn is found in tne sequen-e Of patns 

returned it signifies that one of tne suoeoals produced cy 

tne reduction rule is not solvaDie. From our discussion of 

tne problem reduction formalism, tnis means tnat tie goal is 

78 



not solvable vltn tnis reduction since ail subgoais produced 

must be solved to solve tne goal. Tne inference is taat tr.e 

sequence of reduction rules wnicn produced tne suoeoais does 

not lead to a solution and tne nil patn must oe returned to 

indicate sucn. If no nil patn is returned in tne sequence 

taen all subgoais were solved and tne sequence is returned. 

Figure 14 depicts  tne  requirements  of  tne  lower 

level functions of tne problem reduction bacKtracir scnema. 

D.  A SIMPLE ARITHMETIC THEOREM PROVSR 

Our example to illustrate tnis reduction rule is tie 

simple tneoreT prover developed tnrou^-nout ttsls ccapter. A 

formal problem specification will not be developed as tne 

informal description of ttie reduction is not detailed eiovpn 

to exploit tne formalism of a specification. Instead, tr.is 

paragrapn will develop informal specifications basea en tne 

problem representation of Figure lü and tne function 

retirements of Figure 14. 

1.  SENERATE Saec.1 f_ication 

Our problem  representation  lists a  set  of  four 

reduction  rules, R1...R4. GENERATE Tiust produce a  seauence 

of four <PATH, GOAL> pairs.  Ea?n PATH will terminate vita a 

different  reduction  rule.  We  can  express  tnis in our 

informal notation as: 

GENERATE:<PATH, GOAL> = «PiTH(l), GCAL> , <PATH (2 ) , GOAL>. 
<PATH(3), GOAL>,<?ATRU), GOAL>^> 

sucn tr.at 
TLR:PATH(i) = PATH A, 
TL:PATH(i) = RULE(i) 

7* 

I 



This  will  provide tr.e desired input to  the coaiitior.al 

test. 

GENERATE REQUIREMENTS 
GENERATE:<PATH, GOAL> = NE¥_STATE  sucn tnat 

NEW STATE = {<NEW_PATK, G0AL>! 
NEW_PATH = APPENDR:<PATH, RULE> tor eacn RULE} 

SOLUTION REQUIREMENTS 
SOLUTION:GOAL = boolean   such that 

Doolean <*> Rl:<PRIMITI7ES, GOAL> 
vnere Rl is a problem dependent relation 

FEASIBLE REQUIREMENTS 
FSASIBLE:<PATR, GOAL> =• Doolean  sucn thftt 

Boolean <=> R2: Ulr :PATH, GOALj 
wnere R2 is a problem dependent relation 

DECOMPOSE REQUIREMENTS 
DECOMPOSEKPATP, GOAL> = 

<<PATH, NEW_GOAL(l)> <PATH, MEWJiOALfN)>> 
such tnat 

[N  = numoer  conjuncts   in  precondition  TL :?ATHJ   i. 
R2:<C0NJUNCT(i),   NEW_GOAL(i)>   = 

R2: UlrrPATH,   GOALJ     J 

COMPOSE  REQUIREMENTS 
COMPOSS:SOLUTION_SEQU£NCE  =  SOLUTIONS     sucn   tnat 

[MlMBBS:<NIlT  SOLUTION   SECUENCE>   => 
SOLUTIONS   •   MILJ   & 

[NOT(MEMBER<NIL,   SOLUTION   SEQUENCE>)   => 
SOLUTIONS   =   SOLUTIONS   SEQUENCE] 

FIGURE   14 
Reduction  Rule   Requirements 

2.     SOLUTION   Sp.eci.ficaiiofi 

Tne major difficulty in spe^ifyin* tee SOLUTION 

function is in determining tne appropriate relation between 

tne primitive rules and tne eoal descriptior. In tne 

theorem  prover problem we  attempt   to   reduce   tne   initial  £oai 

ee 



descriptions  to descriptions  wnicn are    Known to     De     true. 

Tne    descriptions    Known    to       be       true      are tne    problem 

propositions,   wftich   tne  problem  representation designates  as 

primitive  rules.     Tne  problem,     tnerefore,     is to  rind  eoal 

lescriptions wnicn  are  in  tne set   of primitive rules.       Tne 

appropriate  relation is a  membersnip  test arc  we  can express 

tnis  as: 

SOLOTION:GOAL = boolean sucn tnat 
boolean <=> [MBMBBBS&OIL, ?RI!*ITIVES>J 

3-  FEASIBLE Sfie£if.i£alioja 

Tne  FEASIBLE  predicate  is  a  test  of tne 

applicability' of tne final rule of tne patn to tne current 

goal description.  Tne specification  question  is  to 

determine wnat relation tests tnis appiicaDility.  In  tnis 

problem a goal description is given in terms  of  constants, 

literals and aritnmetic operators.  Tne rules are expressed 

in  terms  of variables,  constants  ana  operators.   An 

appropriate applicability test  is  a  pattern matcn oetween 

tne conclusion of tne rule aid tne goal aescription.  Tnis 

test can Taten any subexpression  or  literal  of tne goal 

against tne  rule variables, but tne constants and operators 

rust be exact matcnes.  If a matcn is founa tne rule can re 

applied to tne *oal.  Tnis can be expressed as: 

FSASIBLE:<PATH, G0AL> = boolean  sucn tnat 
boolean <=> MATCH:[TL:PATF.GOAL] 



4.     2I;C0MP0S_S Specification 

After tne predicate FEASIBLE nas determined tnat tne 

rule applies to tne soal description, DECOMPOSE mil apply 

tne rule and construct a sequence of <PATH, G0AI> pairs for 

input to BACKTRACK. To determine suoeoals *e note tnat tne 

precondition of tne reduction rule lists tr.e forrr of tne 

subgoais    to     ce    produced. Tne    difficulty    in    creating 

subeoals is in replacing tne rule variables witn tfte problem 

literals    and      subexpressions. We       can       identify      tne 

appropriate literals vitn a matcning process identical to 

tbat conducted by tne feasibility test. For eaca sutgoai 

produced DECOMPOSE must tnen create a <?ATH. GOAL> pair. We 

can express  tnese  requirements as: 

DECOMPOSE KPAT1 ,   GOAL>   = 
«PATH,   NEW  G0AL(1)> <PaTH,   NEW J>OAL(Nl>>     su-n   «at 
N  = number conjuncts  in precondition  of TLrPAxH s 
FOR EACH     CONJUNCT(i)     IN       tlrtPATF 
KATCHS<CONJUNCT(1) i   NEW_G0AL(i>>   = 

MATCH:[tlr:PATH,   GOAL 

5.     COMPOSE Sp.eclficatiin 

The  final  function to  specify is     COMPOSE.     Tnis     is 

also  tne simplest  to  specify.     COMPOSE must     return    nil    if 

nil  is  a member of  tne    parameter sequence.     If  nil   is   not  a 

member of  tne  sequence  tnen  tne  sequence  is     to   ce  returned. 

Tnis  can  be expressed as: 

COMPOSE:SOLUTION  SEQUENCE  = RETURN_SSOUENCE     sucn  tnat 
[MEMBER:<NIL,   S0LUTION_SECUENCE>  => 

RETURN   SEQUENCE   •   NIL]   & 
("NOT(wEvBEi>:<NlL.   SOLUTION   SECUENCE>)   •> LNOTM   St...   nii.,   jwwj  sfcUENCE  .   SOLUTION_SS0USNCT] 

82 



Tue  complete  informal specification for tae functions  is 

eiven at FIGURE 15. 

PROCF:<GOAL, PRIMITIVES, RUL£S> = 
BAC£TRACK:<NIL, GOAL> 

wnere 

BACKTRACK:<PATH,   SOAL>   = 
/APPEND 
(<H(iaiioca<PATH> 

{(SOLUTIONrGOAL   ->   IDtPATHJ 
FEASIBLE:<PATH,GOAL>  -> 

COMPOSE(   BACKTRACK (DECOMPOSE:<PATH,C-OAL>) )] 
NIL>}) 

(GENERATE:<PATK,   GOAL>)) 

,<PATH(4),   GOAL» 
GENERATE:<PATH,   GOAL>   = 

«PATH(l),   GOAL>,    . 
sucn   tnat     FOR  ALL  PATE(i) 

[TLR:PATH(i )   =   PATH       & 
TL:FATH(i)      =   RULSU )J 

SOLUTIONrGOAL  =   Boolean sucn   tnat 
boolean  <=> MEMBER :<GOAL,   PRIMITIVES> 

FEASlBLE:<PATH,   GOAL>   =   boolean sucn   tnat 
boolean  <=>  HlfCB: [TL:P&TH,  (iOALj 

DEC0MP0SE:<P\TH,   GOAL>   = 
«PATH,   NEW_GOAL(l)> <PATH,   NS'rf_GOAL( N )>> 

sucn   tnat 
[N   =  number conjuncts   in  precondition   tl:PATH       & 

FOR   EACH     CONJUNCT(i)      IN     tlr:PATH 
«ATCH:<CONJUNCT(i),   NEW   G3AL(i)>      = 

MATCH:[tlr:PATH,   GÜALJ 

COMPOSE:SOLUTION_SEOUENCE   =  RETURN sucn   tr.at 
[MEMBER:<NIL,   SOLUTION_SEQUENCE>   => 

RETURN   =~NIL & 
NOT(MEMBER:<NIL,   SOLUTION   SEQUENCER    => 

RETURN   =  SOLUTION   SEQUENCE] 

FIGURE  15 
Tneorem Prover  Program  Specification 

S3 



71. CONCLUSION 

The success of future efforts in program synthesis will 

depend in large part on tne ability of system levelopers to 

codify expert Knowledge aDout tne programming process. As 

syntnesls systems become more complex and attemot to solve 

more difficult problems tne searcn space creates in the 

solution process suffers tne effects of combinatorial 

explosion. As tne searcn space «rows tne search strategy 

must become more efficient. Tne larger tne space tne closer 

the searcn process must approximate a straignt line searcn. 

Tne ability to execute a straignt line searcn is a function 

of tne Knowledge the search strategy employs to soive tne 

problem. The better trie Knowledge, tne fewer incorrect 

alternatives will be explored. 

Tne principal goal of tnis paper is tue development o" a 

reduction rule for a svntsesis system based en the problem 

reduction representation formalism. Tnis rule encapsulates 

specific Knowledge about now to solve a class of 

combinatorial problems. It includes a control" "strategy 

based on tne bacKtracK class of algorithms and a design 

metnod for developing suoprooiem specifications whlcn, wnen 

solved, can be incorporated into tne control strategy to 

solve tne original problem. It is believed tnat tne design 

metnod is sufficiently specific to guide tne syntnesls 

process tnrougn tne first level specification of any prooiem 

in its class. 

64 



Trie secondary goal of this paper is tne refinement of 

»eneral programming knowledge concerning tne bacxträcit 

control structure. It Is believed tnat current Knowledge 

concerning tne strategy is deficient in two areas. While 

trie oacJctraclc procedure has oeen schematized, general 

principles concerning tne reiationsnips between tne 

components of toe procedure nave not been "learly 

articulated. Tne design alternatives for tne lower level 

functions nave not been specified and tne reiationsnip of 

tne functions to tne problem nas not been defined. It is 

believed tnat tne reduction rule of Chapter IV can provide a 

design basis for programmers as well as a syntnesls system. 

Tne second area of Knowledge refinement concerns tne 

extension of tne basic strategy to a problem domain to whim 

it nas not been previously applied. Chapter V adapts tne 

basic strategy to search the AND/OR grapns produced by a 

problem reduction representation formalism. Tae informal 

reduction rule developed in tnis chapter can again be 

applied by programmers as a basis for design. 

The bacfctracs strategy is clearly not tne most efficient 

technique for searching state space or ANT/OR trees. 

Whenever problem area Knowledge can be codified tor use by a 

control strategy, a searcn process which selects a best path 

for expansion will oe more efficient tnan a bacstracx 

searcn. In many cases it is eitner not possible to coaify 

such Knowledge in an efficiently computable format or tne 

SS 



searcn efficiency is not wortn tne added effort of including 

töe Knowledge.  Tne bacfftracir strategy offers an attractive 

option. Witn readily available program scnemas and design 

metnods tne control strategy is easily developed. Once 

developed, tne strategy can significantly prune a sear-n 

tree provided problem constraints are sufficiently 

restrictive. Tnis places empnasis on rigorous 

identification and specification of tne problem constraints, 

an activity beneficial to programming. 

Tnere are significant researcn areas remaining to be 

investigated. These include a formal proof of tne reduction 

rule proposed in Cnapter IV, formalizing tne rule proposed 

in Cnapter 7 witn a formal proof, investigation of 

efficiency improving constraint allocation tecnniaues for 

tne lower level functions FEASIBLE, SOLUTION and GENERATS, 

and otner design metnods for tne bacKtracic strategy sased on 

different assumptions tnan tnose discussed. 

80 



APPENDIX A - THE PROGRAMMING LANGUAGE 

Tne foiiowin? is a description of tne programming 

lan*ua*e used in tne definition of tne program scnemas and 

developed examples. Tne descriptive format am most 

definitions are derived from Bacicus LRef. xxj . 

A. THE SET OF OBJECTS AND TYPES 

iZEi description 

B boolean values 

N natural numoers 

I inteeers 

LIST(N) lists of natural 
numbers 

<> sequence of objects 

example values. 

true 
false 

0, 1, 2, ... 

nil 
(11 
(1,2,3) 

<nil> 
<1, 3, true, (2,3)> 

B.  THE SET OF FUNCTIONS 

£.ü3£li22  domain   range 

s:x 

ti:x 

anv 

any 

any 

any 

&££lällÜU 

if x=<xl xn> 
and n >= s 

tnen xs 
else undefined 

if x=<xl> 
tnen <nil> 
if  x=<Txl,.. . ,xn> 

and n>=2 
tnen <xü,... ,xn> 
else undefined 

id:x any any 

Ü7 

- 



lUSSli0.! lasiia rang« 

atom:x any B 

equal:x NxN fi 

nequaltx NxN B 

null:x LIST(N) B 

ienetnrx LIST(N) N 

+ :x 

-:x 

anl :x 

or:x 

NxN 

NxN 

BxB 

3xB 

appendr:x  any 

appendirx  any 

any 

any 

if  x B or x N 
tnen true 
eise faise 

if x=<y, z> 
and y=z 

tnen true 
eise false 

if  x=<y,z> 
and y=z 

tnen false 
eise true 

if  x=nil 
tnen true 
else false 

if  x=nii 
tnen 0 
if  x=<xl,...,xn! 
tnen n 

if  x=<y,z> 
tnen y*z 

if x=<y,z> 
tnen y-z 

if  x=<true, true> 
tnen true 
eise false 

if  x=^false. false> 
tnen false 
else true 

if x-<nii, z> 
tnen <z> 
if  x=<(xl.... ,xn) , z> 
tnen <xl,...,xn.z> 
else undefined 

if  x=<z. nii> 
tnen <z> 
if x=<z, (xl, ... ,xn)> 
tnen < z ,xl,... .xn") 
else undefined 

bti 



function l°2iia lings äelialliaa 

append:x any any if x*<z, nil> 
or x=<nil,zN 

tnen <z> 
if  Is<Z,(ll,...,I!l)> 

else undefined 

tlr:x any any 

aes :x I 

if x=<xl> 
tnen <nil> 
if    x=<xl,...,xn> 

and n>=2 
tnen <xl,... ,xm~> 

wnere m=n-l 
else undefined 

1 T < I x i 

note: tfle result of functions applied to  invalid types  is 
undefined 

C.  THE APPLICATION OPERATION 

Tne application operation allows tfte use or na-nea 

parameters. Function definitions include formal parameter 

names. Tne scope of tnese names is restricted to tne 

function application. Tne actual parameter/formal parameter 

correspondence is positional. If a single actual parameter 

is required tne syntax is as follows: 

function__name:parameter 

If multiple parameters are required, tney are  listed  as a 

sequence as follows: 

function_name:<parameter_l, ... ,parameter_n> 

D.  THE SET OF COMBINING FORMS 

form Qiü!§ üllüill^H 

f(*:x) composition   f:<*:x> 

«y 



form Säü!§L 

[fl, ... ,fnj:x  construction 

(p:x f:y;*:z)    condition 

/f :x 

f :x 

insert 

apply to ail 

definition 

<i'l:x, ... ,fr:x> 

if p:x 
tnen fry 
else g:z 

wnere x.y.z are Bared 
parameters not necessarily 
distinct 

if  x=<xl> 
tnen tl 
if xm<xl,   ... ,xn> 
tnen f:<xl, ft:<xl,...,xa>> 
else undefined 

if  x=nil 
tnen nil 
if  x=<xl,...xn> 
tnen <f:xl,...,f:xn> 

E.  THE FUNCTION DEFINITION MECHANISM 

Tne  operator  Dinds  a  function  name  to  a  function 

definition.  Tne syntax is as follows: 

function name:<parameter list> 
function definition 

Tne language  also permits tne use of anonymous function 

definitions.  Tne lamoda operator is usea  to as-fine  tne 

function as follows: 

(lamoda <pararreter list> 
{function definition}) 
(actual parameter list) 

945 



LIST   OF  REFERENCES 

1. Aho, A. V., Hopcroft, J. E. , ana üllman, J. D., Data 
Structures ana Algorithms,  Addison-wesiey,   19b3. 

2. Horowitz, E. and Sahni, S., Fundamentals, of. Computer 
41*2.lilfiüjs.   PP«    323-369.  Computer Science  Press.   1978. 

3. Naval Postgraduate Scnool Report NPS62-82-fc!ll, Too.-p.own 
Szntnesis. of Simple Diviae ajia C.on,q.uer Algorunms., by D. 
R? SmitnT  November~"l9fe2. 

4. Smith, D. R., A Prooig.ni ESilJCIiail Ajsproaca to. Pro^r-im 
SzniagiiS.» t0 -be~publisnea in Proceedings or tne Eishtn 
International Joint Conference or. Artificial 
Intelligence,  August  1983. 

5. tfallcer, ?. L., "An Enumerative Technique for a Class of 
Combinatorial  Problems,"  Proceedings. 2£ lÜS SZElEosium  on 
ißpJLisSi ^äiasaäii£§,, vol.   x, i960. 

5. Goiomb, S. and Baumert, P.. "BacKtracK Programming:," 
Journal of the Association for Confuting £ac ni nery,, 
vol.     127~no.     4,~pp.~   516-524,   1965. 

7. Bitner, J. R. and Reingold, E. r.., "BaclttracK 
Programming Tecnniques," Communication« of tne 
ASifiSiiliäS. far Computing Macniner.y., vol. IB, no. 11, 
Novemöer~197b. 

8. Reingold, S. M., Nievergelt, J., and Deo. N., 
Combinatorial AlaO.ritn.msi Theory. ana Practice., pp. 
f?6-i3fc\~P rent ice-Hall,  1977. 

9. Gernart,   S.     L.     and     Yeiowitz,     L.,     "Control  Structure 
Abstractions   of     tne     BacKtracK    Programming Tecnniuus, 
IEEE Transactions  on  Schwäre.  Ifigineeririg,     vol.       SE-2, 
noT" 4T~pp.  ~285-292,   December   1976. 

12. Naval Postgraduate Scnool Report NFS52-e2-eil, To^zDown 
Syninesis of Simple. Divile. tad C.ong.ugr Algorithms, by 
D.~R.~SmitnT~NÖvsmber 1982. 

11. Smltn, D. R., A. Problem Seduction Ap.p.rpa,ca to. Program 
Synthesis, xo be published in Proceedings of tne Ei^ntn 
International Joint Conference on Artificial 
Intelligence, August  1963. 

12. I oil.,   p.     1. 

91 



13. BacKus, J., "Can Programming Be Liberatei from tfie Von 
Neumann Style? A Functional Style of Programs ans 
Its Alee bra of Programs," Communications of tßg 
Association for Com£Uiing ^acningr^, vol. 21, no. 8, 
pp7 bl3-64l7~Äui?ust 1978. 

14. lull.,   pp.     618,   624. 

15. 1011.,   p.      620. 

16. Turner, D.<t A., "Anotner Algorithm for Braciret 
Abstraction", Tne Journal of Sv<Tj_eg_lic Logic, vol. 4:4, 
no.     2,   pp.     267-27e,~June~1979. 

17. Eorowitz, E. and Sanni, S., Elindamentais of Cornp_utgr 
Al£2IiII;ü:^»   P«    332»   Computer Sei enee~Press,   19?~. 

IB. Gernart, S. L. ana Yelowitz, L., "Control Structure 
Abstractions of tne EactctracK Programming Tecnnique," 
IEEE Transactions on Software Engineering, vol. SE-2, 
no." 4,  p.     283,   December 1976. 

19. Ibid.,   pp.     285-289. 

20. Garey,     1.       E. and Johnson,     D. S.,     Computers    a a, d 
l£lI3.2libiiityi      A Guide       to tne.         l5.Ep.IZ         of 
E£r£2H2lIllSS.s-ä» P« 236,     rf.     H. Freeman  and  Com-oar.y, 
1979~^ 

21. Naval Post*radute School Report NPS52-82-feJll , Tp.2r£own 
SlUinasis of. Simple. Divide and Conquer Algoritnms , "by 
D.   R.  Smitn,  November  1982. 

22. Bitner, J. R. and Reingold, E. M., "BactitracJc 
Programming Techniques," Communiciti.ons of tne 
Association for Comp.uiing ^acnlnerjr, vol. la, no. 11, 
November  1975. 

23. Golomb, S. and Baumert, P., "BacstracK Prosrrammin?," 
Journal of tne A5.so.clati.2n f_2I C2mp.uil.ag üaeninery.. 
vclT     127  no7~  47  pp7     516-524,~19bE.~ 

24. Gernart, S. L. and Yeiovitz, L., "Control Structure 
Abstractions of tne BacKtractt Programming Tecnnique," 
HIE Transactions on Software Engineering, vol. SS-2, 
no._ 4,  p.  ~Hsi,   December 1976." 

2b. «falser, R. L., "An Enumeratlve Tecnnique for a Class of 
Combinatorial Problems," Proc_ee.dines. of tne Sy.rp.os.ium 
2£ Applied ^aiaemaü£S_ ,  vol.     X,   190«?. 

25. Lindstrom,  G.,   "sacjctracxing   in  a     Seneraii zeä     Control 

92 



Setting," Association of       CocfiUIia£ 2&£Sili2£J[ 
Transaction.!    on.    Pro?raEEing    iän^uaggs    a.£d     Sy.sieTs, 
vöIT i7~no. I, pp. e-267 July 1979. 

27. Sernart, S. L. and Telowitz, L., "Control Structure 
Abstractions of tne BacKtracK Programmin? Tecr.nij.ue," 
IEEE Transactions, OQ §.oflwa.r£ SasiaasriUS. vol. SE-2, 
no.  I, p.  2BÖ, Decemoer 1976. 

93 



INITIAL DISTRIBUTION LIST 

No . Copies 

1. Defense Tecnnical Information Center 2 
Cameron Station 
Alexandria, Virginia 22314 

2. Library, Cole 0142 2 
Naval Postgraduate Scnool 
Monterey, California  93940 

3. Department Cnairman, Code b2 2 
Department of Computer Science 
Naval Postgraduate Scnool 
Monterey, California 9394(0 

4. Curricular Officer, Code 37 1 
Computer Technology Curricular Office 
Naval Postgraduate Scnool 
Monterey, California 93940 

5. Associate Professor Douglas R. Smitn, Code b2sc   2 
Departnent of Computer Science 
Naval Postgraduate Scnool 
Monterey, California  93940 

5.  Associate Professor Eruce R. MacLennan, Code c2ml  l 
Department of Computer Science 
Naval Postgraduate Scnool 
Monterey, California  92940 

7.  CPT Gary Loberg 2 
85, US Army CECOM 
ATTN: DRSEL-TCS-CR 
Fort ^onmnuta, New Jersey ?770^ 

94 




